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ABSTRACT 

Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter 

by Aaron Ford 

 

A model of helicopter blade flapping dynamics is created to determine the occurrence of 

retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. 

Equations of motion are developed, and blade element theory is utilized to evaluate the 

appropriate aerodynamics. Modelling of the blade flapping behavior is verified against 

benchmark data and then used to determine the angle of attack distribution about the rotor disk 

for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling 

of the coaxial configuration with the pusher-prop in straight and level flight is then considered. 

An approach was taken that minimizes the angle of attack and generation of lift on the advancing 

side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift 

distribution is compensated for by using both counter-rotating rotor disks to maximize lift on 

their respective advancing sides and reduce drag on their respective retreating sides. The result is 

an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, 

an assessment of the lift capability of the configuration at both sea level and at “high and hot” 

conditions were made. 
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Nomenclature 

a = blade section two-dimensional lift-curve slope 

= blade section two-dimensional lift-curve slope at section r 

= number of blades 

= chord 

=  chord at blade section r 

=  hinge offset percentage 

= mass (kg) 

= blade radius 

= non-dimensional blade radius 

= time (sec) 

= induced velocity 

= distance in z direction (m) 

= acceleration in the z direction 

= drag (N) 

=  profile drag at station r 

=  force in the z direction 

= moment of inertia of blade 

= lift (N) 

= lift at blade section, r 

= blade moment 

= profile power at station r 

= torque (N-m) 

= length of blade 

= thrust (N) 

= velocity (m/s) 

= perpendicular velocity component 

= tangential velocity component 

= freestream velocity 

= climb velocity 

= blade tip velocity 

= angle of attack 

= critical angle of attack for dynamic stall 

= critical angle of attack for static stall 

= flap angle 

= flap velocity 

= flap acceleration 

= cone angle 

= flap angle in lateral plane 

= flap angle in longitudinal plane 

          = Lock number 
=  blade incidence 

= blade incidence at section r 

          = blade incidence 



iii  

= collective input 

= lateral cyclic input 

= longitudinal cyclic input 

          = rotor inflow ratio 
           = non-dimensional velocity 

= flapping frequency 

= air density 

= inflow angle 

= inflow angle at section, r 

= blade rotation angle 

= rotational velocity 

= coefficient of lift 

= coefficient of drag 

= coefficient of drag at section, r 
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Chapter 1 - Introduction 

1.1 Motivation 

The problem to be examined is the occurrence of retreating blade stall on a coaxial helicopter. 

Retreating blade stall is a phenomenon that occurs as a result for excessive forward velocity and 

is one of the major contributing restrictions to the forward velocity achievable on a rotary wing 

aircraft such as a helicopter. 

The aerodynamic problem of helicopter flight is the dissymmetry of lift that occurs because one 

half of the rotor disk is advancing in the direction of of the aircraft's velocity vector, and the 

other half of the rotor disk is advancing. It can easily be seen that the advancing side has a higher 

velocity, and thus generates greater lift, than that of the retreating side resulting in the 

aforementioned lift dissymmetry. 

Dissymmetry of lift is largely compensated for through a mechanical means referred to as “blade 

feathering”. In short, it allows the individual blade to change its angle of attack (AOA) as it 

rotates about the rotor hub. A typical design feathers the blades so that there is a minimal 

increase of AOA on the advancing side while increasing the AOA on the retreating side to 

generate more lift and balance out the lift across the rotor disk. 

A secondary effect of lit generation across the rotor disk is the occurrence of blade “flapping”, 

which is a literal flapping of the blades to help further increase or decrease lift required across 

the rotor disk in order to balance out the lift distribution. Blade flapping is naturally occuring and 

is a result of the elastic nature of the rotor blades. 

Problems arise when the forward velocity of the aircraft exceeds the ability of the rotor blades to 

compensate for dissymmetry. The retreating blade of the rotor disk will eventually experience an 

angle of attack that exceeds the attached flow angle of the airfoil, causing separation and stall. 

This occurrence is a direct result of the forward air speed, the AOA of the retreating blade, and 

the severity of the blade flapping, which exacerbates the critical AOA. Initial retreating blade 

stall symptoms include vibration, nose-up pitching, and a rolling tendency toward the side 

opposite the advancing side. If the problem is not dealt with as the sypmots appear, the result can 

be a catastrophic loss of controlled flight. 

Retreating blade stall can be delayed or lessened in case of coaxial helicopter configurations. 

Unlike conventional helicopters that possess a main rotor for lift and thrust with a tail rotor for 

anti-torque, a coaxial helicopter utilizes two counter-rotating rotor disks that serve to provide lift, 

thrust, and torque neutralization. This configuration is not immune to the retreating blade stall, 

however. It merely delays its onset. The question is: what is the dynamic response of coaxial 

helicopter experiencing retreating blade stall? Is it as catastrophic as a conventional helicopter? 
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To answer such questions, an analysis of rotor blade aerodynamics, blade flapping dynamics, and 

overall aircraft dynamic responses must be conducted. This examination is particularly 

interesting because of the direction that rotary wing design is taking. The next generation of 

helicopter being developed for the U.S. military is the S-79 Raider, designed and built by 

Sikorsky. The S-79 is a coaxial helicopter with a pusher propeller, which allows it to operate in 

all the flight regimes normally expected out of a helicopter while giving it the added capability of 

straight and level flight and pusher prop-only thrust. Flight testing is currently on going, 

however, the maximum velocity achievable by the S-79 is approximately 250 MPH. To put that 

into perspective, the fastest non-experimental helicopter in the world, the Boeing CH-47, can 

only achieve a maximum speed of 196 MPH. 

It is clear that the coaxial/pusher configuration is an innovative design that will propel helicopter 

design into the future. However, with so few such aircraft in existence, there is great importance 

in examining the physical response of retreating blade stall, creating plausible models to analyse, 

and fully understanding the dynamic responses associated with pushing such an aircraft to the 

edge of its performance capabilities. 

 

 
1.2 Literature Review 

1.2.1 Flap Motion of Helicopter Rotors with Novel Dynamic Stall Model 

One of the facets regarding retreating blade stall is the influence of rotor blade flap motion. Wei 

Han, Jie Lie, Chun Liu, Lei Chen, Xichao Su, and Peng Zhao explore blade flapping in their 

research article entitled “Flap motion of helicopter rotors with nevel, dynamic stall model.” The 

primary focus of the research was to provide a mathematical equation that accurately reflects and 

approximates the movement of blade flapping. Researchers before them have approached the 

same problem utilizing linear approximation methods, based primarily on the assumptions of 

small inflow and flapping angles. These assumptions are convenient in the engineering 

application, however, they are limited to only the small angle assumptions and do not adequately 

address large angles. The task taken on by the researchers was to analyze the aerodynamics of 

the blade element, then establish a non-linear equation that could be generally applied to both 

small and large angles. To effectively do this, the coefficient of lift must be calculated in a way 

that accounts for the dynamic stall of a helicopter blade. Dynamic stall conditions make 

calculating the load of a helicopter blade extremely difficult, and it is a task that is normally 

overcome with the use of vortex theory and the Navier-Stokes equations. These equations, 

however, are complex and require time to properly model and simulate. To overcome this, the 

Snel stall model was used to provide a method that was relatively simple and yet did not 

compromise the accuracy of the analysis. The efforts of this research resulted in a validation of 

the Snel stall model and provided an successful analysis of flap response for rotor blades at 
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varying angles of attack and conditions. The result is a model that provides accurate and 

effective results for determining flap motion of helicopter rotors[1]. 

 

 
1.2.2 Modelling the Aerodynamics of Coaxial Helicopters - from an Isolated 

Rotor to a Complete Aircraft 

The purpose of this paper by Hyo Won Kim and Richard E. Brown was to demonstrate a level of 

computational modelling that accurately captures the aerodynamic flow field associated with 

coaxial rotor systems. The method utilized in this analysis involve the vorticity-velocity form of 

the Navier-Stokes equation which allows vorticity to be conserved. Fuselage aerodynamics was 

modelled using a vortex panel method while fuselage lift generation was modelled using the 

Kutta condition along the surface. Numerical differentiation of a pre-specified non-linear 

Lagrangian helped to derive equations of motion for the blades as driven by aerodynamic loading 

along their span. Farassat-1A formulations of the Ffowcs Williams-Hawkings equations were 

used to account for acoustics as it was applicable. The analysis compared the aerodynamics of a 

hinged coaxial rotor system to the aerodynamics of a stiffened hingeless coaxial rotor. Finally a 

coaxial helicopter with a pusher-propeller for thrust was also examined and compared with the 

aforementioned configurations. The conclusion of the comparisons demonstrated that there was 

no real appreciable difference in the localized interactions of the blades and and the wakes that 

are produced by conventional and coaxial configurations. The study suggests that state of the art 

computational fluid dynamics are more that adequate in providing advanced simulation details 

across a wide array of models and configurations[2]. 

 

 
1.2.3 Helicopter Blade Flapping With and Without Small Angle Assumption 

in the Presence of Dynamic Stall 

In their paper Helicopter Blade Flapping With and Without Small Angle Assumption in the 

Presence of Dynamic Stall, Jyoti Ranjan Majhi and Ranjan Ganguli develop an equation for non- 

linear aerodynamics pertaining to blade stall. Typically, flapping motion is simplified by making 

the assumptions that the flap angle is small, the induced angle is also small, and that the 

aerodynamics manifest themselves in a linear way. Dynamic stall, however, makes the linear 

results come into question. By utilizing a semi-empirical dynamic stall aerodynamics model, 

Majhi and Ganguli are able to derive a general equation that describes helicopter blade flapping. 

In order to solve the steady state conditions and validate the small angle approximation, 

numerical solutions were performed. The result of the study demonstrate that while small 

flapping and induced angle approximations are acceptable in the realm of linear aerodynamics, 

these assumptions yield inaccuracies when applied to nonlinear aerodynamics[3]. 
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1.2.4 The Effects of Rotor Blade-Tip Geometry on Helicopter Trim and 

Control Response 

Kumar and Vekatesan explore the effect the geometry of a helicopter rotor-blade tip has on the 

trim and control response. Advanced geometry tips, which include te anhedral tip as well as tip 

sweep, are designed to reduce noise and increase performance. However, while there are positive 

attributes to the advanced geometric tips, the higher cost is demonstrated to be in the added 

weight and the complex structural design. The study involved a comprehensive study of 

helicopter aeroelastics and rotor-fuselage coupling. It also conducted a comparative analysis of 

straight tip, swept tip, and tip anhedral rotor blades. The helicopter that is being modelled in this 

analysis is a conventional single tail and single rotor with hingeless rotors. Tip pretwist, precone, 

predroop, tip sweep, torque offset, and root offset on included in the model and the blade 

experiences flap, torsion, lag, and axial deformations. In order to model dynamic wake and 

dynamic stall as they pertain to airload calculations, the Peters-He dynamic wake theory and the 

ONERA dynamic stall theory were both utilized. The non-equilibrium equations for six degrees 

of freedom were solved for any general flight condition. Integrating the full set of nonlinear 

equations of motion determines the pilot response to pilot control inputs. The results of the study 

demonstrated that blades with tip dihedral/anhedral and tip sweep saw the 1 per revolution 

harmonics of the root reduce in load. However, the 4 per revolution harmonics of the hub 

increased in magnitude. Finally, rotor tip dihedral resulted in a yaw rate reversal for cyclic inputs 

in both the lateral and longitudinal directions[4]. 

 

 
1.2.5 Control of Dynamic Stall of Helicopter Rotor Blades 

In the study, Control of dynamic stall of helicopter rotor blades, Rong and PinQi investigate the 

viability of trailing edge flaps on rotor blades in order to delay the onset of retreating blade stall. 

In order to calculate the aerodynamic loads of a blade section, the Leishman-Beddoes unsteady 

two-dimensional dynamic stall model was utilized. The trailing edge flap section loads were 

calculated using the Harihara-Leishman unsteady two-dimensional subsonic model. The 

aerolastic responses of the rotor system in high-speed and high-loading in forward flight are 

solved by adopting the Galerkin method and the aeroelastic analytical method while combined 

with numerical integration. The results of the analysis demonstrate that the flaps are effective in 

delaying retreating blade stall. This is achieved by the subsequent redistribution of load to an 

improved state and the increase of efficiency of rotor and blades. An area the study did not 

investigate was the increase requirement of structural support in order for flaps to be utilized in 

such a high speed and oscillatory regime[5]. 
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1.2.6 A Study of Coaxial Rotor Performance and Flow Field Characteristics 

Barbely, Komerath, and Novak established a study in the flow field and aerodynamics of a 

coaxial rotor system as a precursor to studying the acoustics of the associated system as well as 

to better understand the interaction between the two rotors. An unsteady Navier-Stokes solver, 

known as RotUNS, was utilized to predict the hover and forward flight performances of a coaxial 

rotor system. RotUNS uses a simplified blade aerodynamics model. However, RotUNS 

demonstrated an improved performance in hover calculations when compared to element 

momentum theory. The study first simulated a simplified model involving two airfoils traveling 

in opposite directions with a coaxial equivalent separation in order to better understand the 

results of a more complex simulation. Next, a three-dimensional coaxial flow field was 

examined. The pressure fields in all sections of the coaxial system were observed for various 

azimuth position in the rotor cycle. The work was compared with and validated against 

experimental data and helped to lay the footwork for understanding the acoustics associated with 

the coaxial rotor system[6]. 

 

 
1.2.7 Spanwise Differences in Static and Dynamic Stall on a Pitching Rotor 

Merz, Wolf, Richter, Kaufmann, Mielke, and Raffel investigate the spanwise differences in static 

and dynamic stall for a pitching rotor. The investigation was conducted on a rotor blade tip 

model at a Reynolds number of 900,000 and Mach 0.16. It should be noted that the chosen Mach 

number is quite low with respect to typical full scale helicopter designs, which results in isolating 

the stall to being induced purely by angle of attack. Another important feature of note is that the 

blades possessed an aspect ratio of 6.2. By using a high-speed particle image velocimetry and 

unsteady surface pressure measurements, the behavior of the flow separation was observed and 

analyzed. The geometric shape of the rotor blade, which featured increasing twist from root to 

tip, allowed for a shifting of the effective angle of attack roughly two thirds of the span outboard 

on the blade. Flow separation was identified for static angles of attack. When observing dynamic 

stall conditions, it was found that leading edge vortex formations started at or near the location, 

along the span, where there was seen to be static stall onset. Tip vortex was seen to have 

influence in two distinct ways. The first was that lift was reduced and pressure drag was 

increased. This is a predictable outcome as shown from inviscid theory. These conditions hold as 

long as the flow is attached. The second way the tip vortex shows influence is during the 

dynamic stall regime. What occurs is an increase in lift which results in a streamwise vorticity 

and thus a pinning of the dynamic stall vortex. Ultimately, the aerodynamic loads of the outboard 

section are smaller than the inboard sections, or those outside of the dynamic stall regions[7]. 
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1.2.8 Boundary-layer Transition Measurements on Hovering Helicopter 

Rotors by Infrared Thermography 

Richter and Shulein explore the boundary-layer transition on the upper side of helicopter rotor 

blades by utilizing high-speed infrared thermography. A single image of the blade, as produced 

by the infrared equipment allows for the detection of the transition region in both its onset and 

ending positions. Measurements were taken on a Mach-scaled BO105 for varying rotation 

frequencies and compared with numerical solutions. Additional measurements were taken on full 

scale BO105 and EC135 helicopters. It was found that the transition point shifted upstream as the 

rotor rotation frequency was increased. However, in the various cases that were studied, the 

transition region remained nearly constant. In the case of the EC135, specifically, it was found 

that the transition position moved up stream in the radial direction, but is nearly constant up 

through roughly eighty percent of the radial. However, as was with the BO105, the transition 

location is shifted further upstream with the increase in rotational frequency[8]. 

 

 
1.2.9 Performance Analysis of a Coaxial Helicopter in Hover and Forward 

Flight 

In the paper “Performance Analysis of a Coaxial Helicopter in Hover and Forward Flight”, 

Fernandes presents a comparison between conventional and coaxial rotor systems for helicopter 

flight. In order to better understand the complex aerodynamic interactions associated with 

helicopter flight, the free-vortex methodology (FVM), which is a Lagrangian-based wake 

convection methodology, is utilized in order to produce solutions for the wake produced by the 

rotor blades. It is known, and was confirmed in the analysis, that the wake interaction between 

the two rotors was highly dependant on the spacing of the two rotor systems. This dependance on 

spacing provides a variable in which to employ a parametric study on the effect of that distance 

and how the wake interaction changes as the spacing changes. During the comparison phase, an 

equivalent single rotor system was compared to its coaxial counterpart. The results demonstrate 

the while the conventional system demonstrated better performance response in forward flight, 

the coaxial was superior in hover conditions. It was also found that higher power requirements 

were needed with a lower inter-rotor spacing. It was expected that the upper rotor would be 

influenced by the lower rotor in low advance ratio conditions as well as hover. A response that 

was not anticipated was that the upper rotor was affected with a higher advanced ratio as well[9]. 

 

 
1.2.10 Performance and Vibration Analyses of Lift-Offset Helicopters 

Go, Kim, and Park establish a study to validate the analyses of lift-offset compound helicopters 

in the areas of performance and vibration. The aircraft of focus is the Sikorsky XH-59A, which 

was a precursor to the S-69 coaxial helicopter with a pusher propeller. To perform the analyses 
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for the performance, vibration, and loads, the Comprehensive Analytical Method of Rotorcraft 

Aerodynamics and Dynamics II (CAMRAD II) analysis code was utilized. In order to complete 

the analysis, a general free wake model was also used. The SH-59A was analyzed in various 

flight conditions in both standard helicopter utilization and while using an auxiliary propulsion 

system, such a pusher propeller. The vibrational response in forward flight was also examined. 

The results of the analysis demonstrated a close agreement with flight test data and with previous 

analyses proving that the techniques used are reliable and appropriately established[10]. 

 

 
1.2.11 Design of a Rotor Blade Tip for the Investigation of Dynamic Stall in 

the Transonic Wind-tunnel Gottingen 

Lutke, Huhn, Govers, and Schmidt present the aerodynamic and structural design of a double- 

spect planform pitching blade-tip. The successful utilization of high-fidelity finite element (FE) 

and computational fluid dynamic (CFD) simulations were used to aid in the design process. A 

three-dimensional FE model was used to analyse the stress distributions, deformations, as well as 

eigenfrequencies. CFD was used to simulate a light dynamic stall case by employing Unsteady 

Reynolds-Averaged Navier-Stokes (RANS) equations. When compared to experimental data, the 

results of the CFD demonstrated good agreement only during attached flow. Once separation 

occurs, experimental and numerical data start to diverge. Regarding the structural analysis, under 

the same conditions, it was found that a factor of safety of 2.0 was sufficient[11]. 

 

 
1.2.12 Unsteady Aerodynamic Analysis and Wake Simulation of Helicopter 

Rotors using the Time-Domain Panel Method 

Lee, L. Cho, and J. Cho present their study of helicopter rotor aerodynamics. Specifically, 

unsteady aerodynamics. Based on potential flow theory, an unsteady panel method was utilized 

for the analysis. The solution for the panel method involves doublet singularities and a piecewise 

constant source. This panel method is a combination of the Dirichelt Boundary condition and a 

time-stepping method. The unsteady behavior of helicopter rotors are simulated by using a time- 

stepping loop. In order to simulate the wake associated with the helicopter rotor, a free wake 

model was used. The study used the panel methods with an assumption of incompressible flow 

and found that the results were comparable to the experimental data for both forward flight and 

hovering conditions. The study validates the use of the time-domain panel method for practical 

applications such as rotor system configuration analysis and aerodynamic design[12]. 
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1.2.13 Helicopter Theory 

Helicopter Theory by Wayne Johnson is a comprehensive look at helicopter theory that can be 

used as a reference to anyone wishing to be involved in helicopter design. The textbook 

examines all facets of helicopter design, examining areas such as vertical flight, forward 

flight,design features, performance requirements, rotary wing dynamics, rotary wing 

aerodynamics, noise considerations and design, stability and control, and stall characteristics. 

The text will be used as a cornerstone to this analysis and will provide a high degree of 

completeness in an analysis of this nature[13]. 

 

 
1.2.14 Helicopter Flight Dynamics 

Helicopter Flight Dynamics by Dr. Gareth D. Padfield is a text that covers the theory and 

application of flying qualities and simulation modelling for helicopters, and is the AIAA 

textbook of choice for covering helicopter flight dynamics. The scope of the text covers the 

dynamic responses of helicopter flight in all flight regimes that is involved in helicopter flight. It 

is a thorough and comprehensive look at flight dynamic modelling for rotary wing aircraft[14]. 

 

 
1.3 Project Proposal 

The purpose of this project is to develop a model that can be used to approximate the dynamic 

response of a coaxial helicopter after the induction of retreating blade stall has occurred. The 

configuration and mechanics of a coaxial helicopter has be been explored to a far lesser degree 

than its conventional counterpart. As a result, the focus of this project will center around the 

dynamic responses of a coaxial helicopter, specifically, in both the conventional flight regime as 

well as a pusher propeller configuration. The project will require an analytical development of 

the equations of motion of the airframe, as well as an analysis of individual responses such as 

blade flapping. 

 

 
1.4 Methodology 

The method used to study this presented problem will use an approach that analyses the 

individual components to be added together in order to determine the final response. 

The first step will be modeling the motion of the blade flapping. Blade flapping occurs as a 

function of the asymmetric loading of rotor disk throughout the rotation during forward flight. 

The flapping will have an influence on the forces that the rotor shaft experience, which directly 

affect the fuselage and the dynamic response of the aircraft. 
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Next, an aerodynamic model of the rotor blades will need to be established. This will prove a 

complex area due to the fact that the rotor disk experiences a different velocity on each spanwise 

section, interacts to a degree with its own wake, and experiences various flow conditions, such as 

reverse flow and stall on different section of the rotor disk. 

Finally, the effects of the flapping and the aerodynamics of the disk will provide the moments 

and forces that are induced upon the rotor shaft. These forces and moments that the shaft 

experiences will directly influence the behavior of the fuselage and, subsequently, the entire 

body of the airframe. It is the intent of this project to model the dynamic responses as a result of 

these forces and moments and offer a prediction to aircraft behavior as a result. 

This analysis will primarily be quantitative in nature and will rely heavily on helicopter theory 

that has been outlined and, in many cases, approximated using physical theories or models that 

can offer accurate representations of real world responses provided appropriate assumptions. 

 

 

 

 

Chapter 2 - Introduction to Helicopter Aerodynamics 

2.0 Blade Element Theory Introduction 

The need for a quantitative method to determine the lift forces over a rotor disk brings rise to the 

need for Blade Element Theory. This method of solving lift distributions with this method are 

not terribly dissimilar to that of solving two-dimensional airflow theory. However, as the name 

implies, the computed solution only applies for a specific element of the rotor blade. There many 

aspects to the aerodynamics of rotary-wing aircraft that differ greatly from their fixed wing 

counterparts. As is commonly known in the aerospace community, there are theories for 

determining aerodynamic forces of a fixed wing that can be solved with relative ease due to the 

fixed nature of wings on a standard airplane. Given the airfoil shape and a specific flight 

condition, the lift characteristics are easily found. Nothing changes with respect to time. 

However, this is not the case in rotary-wing flight. Let us first examine the airflow differences of 

fixed versus rotary wings. For a given flight condition, fixed wings experience the same 

freestream velocity and lift on all sections of the wing. This, of course, implies no aerodynamic 

or geometric twist and is somewhat simplified, however, the point is easily seen. The helicopter, 

however, has a rotary wing. Due to the rotational nature of this wing, the freestream velocity 

experienced by this wing varies along its span. This adds several layers of complexity to the 

determination of the lift distribution along a rotor blade and is the reason why blade element 

theory is necessary. The procedure for this theory involves solving for a small element, the 

smaller the better, at a specific location along the span and then adding all of the elements 

together to get the total lift distribution. 
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There are two distinct flight regimes within rotary-wing flight that must be examined separately. 

Those include flight in hover and forward flight. For the reader that is unfamiliar with helicopter 

flight, hover is the flight condition where the rotary-wing generates lift vertically and suspends 

the aircraft in question in the air at a pilot commanded altitude without inducing translational 

flight. It is this flight condition that gives the helicopter a strong advantage over fixed wing 

aircraft in the accomplishment of certain missions. Forward flight, like its fixed wing 

counterpart, is simply translational movement. In discussing this analysis, forward flight will be 

used to refer to, literally, translation flight toward the front of the vehicle. However, in reality, 

due to the unique nature of helicopter design, the so-called forward flight condition might also 

simply refer to translational flight in general as much of the rotor blade aerodynamics remain the 

same regardless of translational direction. That distinction must be defined by the speaker or 

writer in his or her analysis. 

In the discussion of hover versus forward flight, the hover condition is easily the more simple of 

the two. Assuming a zero-crosswind condition, the only freestream velocity that the rotor blade 

experiences is that which it creates through its rotational movement. In essence, 

𝑈  = 𝑈𝑈 (2.1) 

Where 𝑈 is the freestream velocity at location r along the span of the blade. By common 

convention, 𝑈 represents the angular velocity of the rotor system about the hub. Figure 2.1 

provides a visualization of the velocity profile about the rotor disk in hover flight. 

 
 

 

 
Figure 2.1- Generic velocity profile of rotor disk in hover. 

Figure 2.1 does not represent a specific aircraft. Variables were chosen to ensure that the 

differences in the velocity about the disk were obvious to the reader. 
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The visualization provided reinforces the thought that computing the force distribution along a 

disk is as simple as determining the solutions for a single blade and applying it to all blades. 

However, it is prudent to remind the reader that the this is a gross simplification of the analysis. 

Recall that the lifter surfaces of the helicopter rotate. In order to truly capture the effects of the 

lift distribution, these forces will need to be examined with respect to time as the rotor system 

rotates about the hub of the helicopter. This will be explored in more detail in subsequent 

sections of this study. 

The complexity of the analysis grows with severity as forward flight is introduced to the 

examination. Intuitively, one can conclude that as the helicopter translate in a given direction, the 

advancing side of the rotor system will experience a freestream velocity than the retreating side. 

This phenomenon is determined by the following: 

𝑈  = 𝑈𝑈 + 𝑈∞𝑈𝑈𝑈(𝑈) (2.2) 

Where 𝑈∞is the freestream velocity of the aircraft and 𝑈is the angle of the blade about the hub. 

 

 
Figure 2.2 - The velocity profile the rotor disk in forward flight. 

Figure 2.2 provides a visualization for how the velocity profile varies about the disk in a forward 

flight condition. The coordinate system of the rotor, by convention, is that 0 degrees represents 

the direction toward the aft of the helicopter, while 180 degrees is the front. U.S. made 

helicopters utilize a counter-clockwise rotation, when viewed from above, and thus angles 0-180 

degrees represent the advancing side of the disk, while 180-360 represent the retreating side of 

the disk. Again, the velocity profile and initial conditions do not represent a specific airframe, 

but rather were chosen to best exemplify the phenomenon being demonstrated here. 

Close inspection of the figure shows that velocities on the advancing side of the disk experience 

a greater velocity than that of the retreating side. This is not unexpected. However, the section of 
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the retreating side between 260 and 280 degrees adjacent to the hub reveals something that might 

defy intuition. It shows that there is reverse flow on the disk. That is, when the rotary wing is in a 

forward flight condition, this section does not travel fast enough in its rotation to overcome the 

forward speed and has air that travels in the reverse direction relative to that blade. 

Clearly, this occurrence of adverse velocity profiles across the disk will result in a net force that 

creates a moment and a left rolling tendency of the helicopter. Uncorrected, this is an 

uncontrollable flight regime. This is compensated for by utilizing a swashplate, which helps to 

correct the problem as well as provides the means for translational movement. 

 

 
2.1 Swashplate 

The swashplate of a helicopter, for all its complexities, is a simple and elegant solution to the 

problem of inducing translational lift and helping to equalize the lift distribution from side to 

side. The swashplate is made up of two parts. The first part, or the lower section, has the ability 

to tilt in any direction that the control inputs dictate. It can shift up and down and/or tilt, but does 

not spin. The second part, or the upper section rests on top of the lower piece so that it shifts and 

tilts with the lower piece. It is attached to each of the rotor blades and rotates with the rotor 

system so that so that the pitching angle of the swashplate can control the individual pitch of the 

blade as it rotates about the rotor hub and shaft. It is in this way that the pitch is held constant for 

a specific section of the disk. 

If the control input for the pitching of the swashplate, referred to as the cyclic, is pressed forward 

so that the aircraft will nose down and pitch forward, then the swashplate will also tilt forward. 

In a hover position, this will increase the angle of attack, and thus the lift, of the retreating side of 

the rotor disk and create a moment. Due to gyroscopic precession, the moment, which is induced 

at 270 degrees, will take effect at 0 degrees, causing the helicopter to pitch forward. The 

orientation of the swashplate will also maintain that the angle of attack retreating side is 

increased and the advancing side is decreased to help generate similar levels of lift. This is only 

part of the story, however, and the rest of the compensation will take place through a 

phenomenon known as blade flapping. 

 

 
2.2 Blade Flapping 

Blade flapping is, literally, the up and down flapping of the rotor blades as they rotate about the 

rotor hub while in forward flight. It is a direct response to having an uneven lift distribution and 

does not occur in the state of hover. 

As the blades rotate from 0 degrees to 180, they experience the greatest amount of lift for an 

otherwise unaltered system. Rotor blades, whether through hinges or pure elasticity, respond to 
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this increase of lift with a moment along the entire span of the blade resulting in an upward 

flapping velocity. As shown in figure 2.3, the velocity of the flapping (vf), plus the induced 

velocity (vi) resolve into velocity direction that ultimately reduces the angle of attack (AOA). 

This decrease in AOA results in a reduced lift. 
 

Figure 2.3 - Decreased angle of attack due to up flap [15] 

 

 
Conversely, on the retreating side, the blade experiences less lift resulting in a downward 

flapping and thus a downward velocity. Figure 2.4 shows that this downward flapping produces a 

resolved velocity vector that increases the angle of attack and increases lift on the retreating side. 

 

 
 

Figure 2.4 - Increase angle of attack on retreating side due to down flap [15] 

 

 
It is through the means of flapping that the rotor system is able to compensate for the uneven lift 

distribution. The blades will flap up and down in a periodic fashion as they rotate about the rotor 

shaft so that they are flapping constantly on an individual basis. Because the flapping occurs in 

the same way in the same place about the disk for a given flight condition, the place that the 

blade occupies as it makes up the so called rotor disk remains the same. As previously discussed, 

the cycle is of up and down travel of each blade occurs once per revolution and can be modelled 

as simple harmonic motion. In order to create an aerodynamic model with the highest possible 

accuracy, blade flapping will need to be considered and taken into account. 
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2.3 Retreating Blade Stall 

The focus of this study revolves around the occurrence of retreating blade stall. As the name 

implies, this occurs when the blade rotating through the retreating side of the rotor disk stalls and 

no longer produces enough lift to maintain controlled flight. Retreating blade stall, if not 

corrected soon enough, results in catastrophic dynamic responses. It is universally accepted that 

pilots should avoid conditions that will result retreating blade stall. In previous sections, it was 

seen that the velocity profile across the disk in forward flight varies due to the rotational nature 

of the rotor blades. The swashplate and blade flapping was also discussed. The profound effect 

that the swashplate and the flapping have on stable flight together must not be overlooked. The 

swashplate provides much of the pitch adjustment for effecting the AOA as the blades rotate, 

while blade flapping finishes the job. As the pilot provides a greater input, it results in a greater 

swashplate pitching angle. This increase in pitching will result in a greater AOA potential, and 

greater lift generation, and a greater degree of flapping. All of this in conjunction provides the 

lift that is required for flight on a helicopter. There are, however, limitations. Because lift is a 

function of the square of the velocity, increasing the forward velocity on the aircraft will cause 

an increase in lift on the advancing side. This will also decrease the lift on the retreating side. As 

shown in figure 2.4, the decreasing lift results in a downward flapping which increases the angle 

of attack. It is commonly understood amongst aerodynamicists that airfoils have a maximum 

angle of attack that can be achieved before stalling regardless of the freestream velocity. It 

should be fairly apparent by now that if the forward velocity of the helicopter is high enough, 

then the pitching of the swashplate and the increased angle of attack due to blade flapping will 

increase past the point of stall. Recall the fact that the velocity changes, or increases as a function 

of radial distance from the hub. With that in mind, it stands to reason that the stall will occur first 

at the tip of the rotor blade at the 270 degree position. As the problem is exacerbated, then the 

affected section of the blade along its radius as well as various points of the disk will increase. 

Figure 2.5 demonstrates this in a way that is easier to visualize. 
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Figure 2.5 - Stall region on a rotor disk[16] 

For a given flight condition, figure 2.5 demonstrates the potential distribution of the stall region. 

This region could be smaller or larger depending on the severity of the problem and whether or 

not the pilot takes proper corrective action. 

It should be noted that for the purposes of this analysis, the blades are to be assumed to be both 

rectangular and of a uniform airfoil type and shape. It is not uncommon for higher performance 

helicopters to be designed with swept wing tips, geometric twist, aerodynamic twist, or any 

combination of them. The purpose for this is to delay the onset of retreating blade stall and 

increase the bandwidth of the performance limitations of the aircraft. However, because these 

design measures merely delay rather than eliminate completely blade stall, it is reasonable that 

an appropriately accurate assessment can be made with the aforementioned simplifications. 

 

 
2.4 Structuring a Model 

The purpose of this study, ultimately, will be to create a model of the vehicle dynamics of a 

coaxial helicopter in the condition of retreating blade stall. Due to the high dependence of the 

dynamic response one the rotor blade forces, it is paramount that the aerodynamic model 

possesses a fidelity that is reasonably high. This means that a thorough examination of the 

aerodynamics must be undertaken. This study will employ a “crawl, walk, run” methodology. 

The introduction of new complexities to the explored quantitative model development will only 

occur if it provides a meaningful addition or accuracy to the problem at hand. 

The examination will begin by conducting a study on the lift distribution of the rotor disk using 

blade element theory. This includes not only lift and drag, but power, thrust, torque, and 
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efficiencies. Two distinct flight conditions will be pursued: hover and forward flight. An 

accurate, stable model of both conditions will be developed. Hovering brings with it the need for 

adequate power and for axial-translational flight. Forward flight brings with the drag profiles and 

downwash distributions that increase the level of complexity significantly. The modelling will 

provide the basis for which a time transient dynamic response can be created. Only then, after 

stable models have been successfully created, can a retreating blade stall condition be explored. 

The last stage of the development will be to explore the differences in the application of a 

coaxial configuration. There will be advantages and disadvantages, as well as expansions to the 

performance limitations. The end state goal for the project is to have a viable prediction of 

coaxial rotor aerodynamics as well as retreating blade stall dynamic responses. 

 

 

Chapter 3 - Blade Element Theory 

3.1 The Hover Flight Regime 

As discussed in previous section, blade element theory will examine the aerodynamic 

characteristics of an element of the rotor blade by utilizing methods that close mimic airfoil 

theory. In some cases, it is helpful to marry it with momentum theory in order to reach the 

necessary equations. The process of determining the aerodynamic qualities is fairly 

straightforward when constrained to the single element. However, the complexities being to 

introduce themselves when one considers the all of the parts to create the whole. This is further 

exacerbated by the dynamic nature of even the most static of flight conditions of rotary-wing 

flight. It was previously mentioned that hover flight dealt with a lesser degree of complexity than 

forward flight, so that is where this analysis will begin. 

 
The analysis will be performed primarily with Matlab. This will provide several advantages. The 

obvious one is that it will greatly reduce workload and allow for a solution that possess a greater 

degree of accuracy. It will also provide a means of creating a model that can be improved over 

time as necessary. The Blade Element Theory (BET) model created in Matlab will provide a 

generic model architecture that can be applied to a wide variety of rotary-wing platforms. 

 
It should be noted that this analysis will rely heavily on the hard work that others have completed 

in the past and will not provide extensive derivations to the equations utilized. The reader will 

have to take the provided equations on faith, or seek out the reference material to satisfy the need 

for proofs. 

 
The following section will provide a generic demonstration of the areas that are important to 

hover flight. It will be helpful to determine the angle of attack(AOA) of the rotor blade along its 
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span as it rotates through its periodic cycle. First, however, the velocity of the rotor blade must 

be found as the AOA is directly affected by the velocity. 

 
It should be noted that this is in the preliminary stages of development and does not take into 

account blade flapping or blade stall. These phenomena will be explored in greater detail later in 

the analysis. 

 

 
 

3.1.1 Induced Velocity and AOA of blade 

Induced velocity, or downwash, is the velocity of the flow that is a direct result of the rotor 

system. It is the downward flow of air that is felt under the disk and directly affects the flow of 

the freestream velocity, which affects the angle of attack and all AOA dependant factors. 

 

 

 

 

 

 

 
Figure 3.1 An illustration of induced velocity and tip vortices[16] 

 
Induced velocity of the rotor blade along its own span(vr) can be found with the following 

relationship: 
 
 

 

𝑈 = 𝑈 (− 
77177

) + ( 
77 

) + 1(
77177 

+ 
77 
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77177 17 

− 
77177 77 (3.1) 
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𝑈7 is the rotor tip velocity. 

 
𝑈 is the the coefficient lift slope for the particular blade element. In the case of a uniform 

blades, and while ignoring stall effects, it is a reasonable assumption to treat each element as 

though having the same lift slope. 

 
b is the number of blades the rotor system has, while cr is the chord of the blade at station r. 
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𝑈7 is the climb velocity, which assumes vertical climb along the aircrafts z-component. 𝑈7 = 0 

during hover, but is a critical factor in vertical translational movement. 

 
R is the length of the whole rotor blade. The BET model architecture allows for a user defined 

level of accuracy. The user simply inputs the desired number of steps, and the invoked level of 

accuracy will be provided. 

 
Figure 3.2 Shows the induced velocity along the span of the blade 

 
 

 
Figure 3.2 Induced velocity along span of blade 

 
Now that the velocity at station r has been determined, the angle of attack (𝑈 ) for each station 

can be found. 

 

 

𝑈  = 𝑈 − 
(77177) 

   
(3.2) 

 

Where theta is the radial about the axis of rotation, and Omega is rotational velocity of the rotor 

system. Figure 3.3 demonstrates the distribution of the AOA along the span of the blade while at 

the 90 degree radial. The data for the following plots reflects the dimensions and characteristics 

of the Robinson R22. 
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Figure 3.3 AOA along blade span 

 
Figure 3.3 shows a distinct climb in AOA close to the root of the blade with an initially extreme 

climb to a nearly asymptotic end as it reaches the tip. While it appears that there is a discernible 

increase in AOA, it would be a reasonable assumption to say that the AOA is uniform across the 

blade. 

 

3.1.2 Lift and Drag of the Element 

Lift for the rotor blade is found with the following: 
 

𝑈𝑈 = 1 𝑈 𝑈(𝑈 − 7
7177

)𝑈  (𝑈𝑈)2𝑈𝑈 (3.3) 
2 

 

ρ, in this case, is the density of the air. 
 

 
 

Figure 3.4 Lift along blade span 

 
Lift, as always, is influenced by the square of the velocity and figure 3.4 aptly demonstrates the 

rapid increase in lift along the span. While it does not provide any specific details, it does show 

the trend and provides a visualization of how there might be a great potential for a blade to flap 

based on the higher lift forces out toward the tip of the blade. 

 
Drag is very similar in the sense that it is a function of the square of the velocity: 
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𝑈𝑈 = 1 𝑈 
 

 

𝑈𝑈 (𝑈𝑈)2 (3.4) 
  7 2 n7 

 

Cd is the coefficient of drag as it relates to skin friction drag. Induced drag, or drag as a result of 

lift, is also a major contributing factor that should be taken into consideration, 

 

 
 

Figure 3.5 Drag along the blade span 

 

 
Although there are subtle differences, the drag and lift diagrams demonstrate similar profiles. 

 
 

3.1.3 Torque 

Determining the torque produced by the main rotor is of great concern to those who design and 

fly helicopters. The main rotor and the tail rotor are some of a helicopters physical attributes that 

truly help to make it a unique aircraft class. The amount of torque that is developed by the main 

rotor must be counteracted by the tail rotor, which is controlled by the anti torque pedals. 

 

 

𝑈  = 𝑈𝑈𝑈𝑈(7717 
) (3.5) 

   

 

 

Where 𝑈 is the inflow angle of the airflow 

 
 

𝑈𝑈 = (𝑈𝑈 𝑈𝑈𝑈(𝑈 ) + 𝑈𝑈  7 
𝑈𝑈𝑈(𝑈 ) (3.6) 
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Figure 3.6 Torque along blade span 

Predictably, the amount of torque increases further out from the blade root. 

3.1.4 Thrust 

A cursory examination of the following equation shows the relationship between thrust, lift, and 

drag. To those that are familiar to aerodynamics in general, it should come as no surprise that the 

thrust is a function of lift with the drag subtracted out. 

 
The following equation, like those previously mentioned, applies to a single element, and 

requires that the thrust be integrating along the span of the blade. 

 

 
𝑈𝑈 = 𝑈𝑈 − 𝑈𝑈(77177

) (3.7) 
   

 

 
 

Figure 3.7 Thrust along blade span 

 
Figure 3.7 shows a similar trend to the previous graphs and it comes as no surprise to see an 

increase slope as more distance to the tip is reached. 
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3.1.5 Power 

It logically follows that in order to achieve specific performance benchmarks, an adequate 

amount of power needs to be made available in order to reach said benchmarks. In reality, the 

rotating blades will produce drag in several forms: skin-friction, induced drag, wake drag, and 

pressure drag to name a few. The two that concern the engineer and the pilot the most, for all 

intents and purposes, will be the skin friction drag and the induced drag. The design intent 

behind a rotor system to maintain the rotational velocity of the rotor system to remain constant. 

This is so that lift, and thus translational lift, can be controlled directly with angle of attack 

changes throughout the disk. If a constant angular velocity is maintained, then the skin friction 

drag should remain fairly constant in a hover. However, introducing AOA to climb or induce 

translational flight results in a greater level of induced drag. That is not to say that the rotor 

blades will no produce a greater skin friction drag during translational flight. Drag is still a 

function of the square of the velocity. The induced drag, however, is going to produce the 

greatest change in drag in the least amount of time. This drag needs to be overcome in order 

maintain the required RPM. 

 
Figure 3.8 Shows the trend of power required along the span of the blade. While it does maintain 

a trend that is remarkably similar to the previous data plots, it should be noted that the power 

toward the tip increases at a greater rate than the drag plot. 

 

 

 

 

Figure 3.8 Power required along blade span 

 
The performance of the engine or engines is of great importance to the overall design of the 

aircraft and should not be understated. In certain cases, it might be possible to bottleneck the 

performance of the helicopter due to a lack of power. This could result in an inability to control 

the aircraft or perhaps even stall the aircraft prematurely. Engine power is important in any 

aircraft, but it is especially important when designing a rotary wing aircraft. 

 

 
Engine related to torque, and is found with the following relationship: 
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𝑈𝑈 = 𝑈𝑈 𝑈 (3.8) 

 

3.2 Interpreting the results 

A quick examination of the graphs above demonstrate a consistent and obvious trend: each force 

or reaction increases its prominence the further away from the hub along the blade it is. While 

this has been an elementary examination at best, the results are very telling. Each of the forces 

are ultimately affected in the way that they are due to the increase of velocity along the span. 

This means that the greatest level of lift, drag, power, torque, etc occurs toward the tip. Because 

such a large dependence on the aircraft's performance will ultimately rely on the outer sections of 

the disk more heavily, any change on the outer section will have greater influence on the 

behavior. 

 
It is understood that retreating blade stall will occur beginning at the blade tip and work its way 

inward as the problem becomes exacerbated. This could result in tragedy because the airframe 

may rely heavily on the available lift on that rotor section, which will disappear during a stall. 

 
Even without examining the extreme conditions that lead to blade stall, one can consider what 

might occur if blade tip losses are factored in. Blade tip losses have not yet been explored in the 

analysis, but will be closely examine later in this analysis. All that needs to be understood and 

this juncture is that the blade tips lose efficiency, and thus their ability to generate lift compared 

to the ideal case. Suddenly, the lift, power, etc., requirements have completely changed. 

 
In order to mitigate the problems associated with this phenomenon, a great effort must be made 

to ensure that distribution of the aerodynamic qualities are as evenly distributed across the blade 

as possible. This might be achieved by blade washout, also known as geometric twisting, or 

aerodynamic twisting. Not only is this important due to efficiency and controllability in all 

regimes of flight, but also in structural integrity and longevity of the rotor blades. 

 

 

 

3.3 Next Steps 

Moving forward, the next step will be to examine the above qualities with a more thorough 

understanding and a higher level of fidelity. The above, while applied in an elemental structure, 

relied heavily on momentum theory. Blade element theory in its entirety will provide a solution 

with a higher degree of fidelity. 

 
Increases the fidelity of the analysis will include integrating concepts such as blade tip losses, 

slipstream conditions, power losses due to slipstream, rotor thrust and power in climb and 
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hovering conditions, as well as maximum thrust performances. After that is concluded, 

examining the performance due to overlapping blade systems will be necessary to determine the 

qualities of a coaxial platform. 

 
Once the hover is complete, the framework for transitioning to forward flight will be established 

and the analysis of forward flight can begin. These two flight regimes will provide the basis for 

which the dynamic model can be built and examined and a transient time domain. 

 

Chapter 4 - Rotor Disk Dynamics 

Chapter 3 discussed in some detail the application of Blade Element Theory in the hovering 

regime. While it was certainly less than all encompassing, it was sufficient for providing an 

understanding of how to calculate the lift in certain conditions with an acceptable level of 

fidelity. What would remain is an in depth analysis of the aerodynamics as it pertains to the 

forward flight regime. The aerodynamics of this condition is fairly complex, as is rotorcraft 

aerodynamics in general. A full appreciation of the aerodynamics concerning helicopters would 

take a great deal more scrutiny than what is needed for this study. However, the model can be 

simplified without compromising on accuracy beyond an acceptable limit for the purposes of this 

analysis. 

 
If major aerodynamic phenomena, such as vorticity, side slip, and other such occurrences are 

assumed to be negligible, then the Blade Element Theory will provide a straightforward means 

of determining the forward flight condition. The lift of any given element within a rotor blade is 

a function of the relative velocity of the wind over and under that blade element. This relative 

velocity must change as the blades rotate due to the forward component of travel. The 

relationship that describes this change in velocity is as follows: 

 

  (4.1a) 

 
Or in non-dimensional terms: 

 
  (4.1b) 

 
Figure 4.1 illustrates how the velocity, in conjunction with the angular velocity, creates a 

situation where the velocity profile over the disk changes. This changing velocity profile 

motivates the final goal of the analysis. 
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Figure 4.1 A demonstration of dissymmetry of lift 

 

 

4.1 Establishing a model 

In order to establish the foundation of a dynamic model, a low fidelity analysis that can be 

enhanced in the future will be built. There are important aspects to consider when constructing a 

model. These include: 

 
● Aerodynamics 

● Rotor system types 

● Blade flapping 

 
The aerodynamics have been addressed in previous sections and will not be elaborated upon 

further until a higher fidelity analysis is required. It is important to note that the exploration of 

the aerodynamics is not all encompassing and should be taken as a baseline in which to 

determine behavioral trends. 

 
The most critical piece in this analysis is the rotor flapping. In reality, rotary wing flight is 

possible only because of blade flapping, and cannot be neglected. The importance of flapping 

will be covered in a later section when a detailed account of blade flapping is made and 

implemented into the modelling. 

 

4.2 Rotor System Types 

Determining the various rotor system types is an important detail to examine because it will 

directly affect how the lift of the disk influences the whole body. This fact might appear obvious 
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on the surface, but a bit of scrutiny will show that the issue is a bit more complex. The real 

differences will become apparent in the flap analysis. 

 
Rotor systems can be reduced into three main categories: Rigid rotor systems, articulated rotor 

systems, and teetering rotor systems. 

 

4.2.1 Rigid Rotor Systems 

A rigid rotor system, as the name implies is a system that is primarily rigid, but relies on the 

flexibility of the rotor blades to absorb the stresses of the blade flapping and the torsion produced 

by the lead-lag effect. 

 

Figure 4.2 Rigid Rotor System[15] 

 

Figure 4.3. A Bo105 which utilizes a hingeless rotor system, photo courtesy of RedBull.com 

 
The advantage to this type of system is that there is a higher response to control inputs. This is 

due to the moments that are created by the blades which are directly translated to the fuselage of 

the helicopter. Handling responses are described as being sensitive with little latency. The 

disadvantage to this type of system is that the rotor blades need to be much stronger and are thus 
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heavier. Also, the rigid rotor system translates any perturbations due to turbulence to the 

helicopter which can cause for a bumpier ride in choppy air. 

 

4.2.2 Articulated Rotor System 
 

 

Figure 4.4 Articulated System [15] 

 

Figure 4.5. SH-60R, utilizing an articulated rotor system. Photo courtesy of LockheedMartin.com 

 
Articulated Rotor Systems are such that the individual blades are mounted to the swashplate hub 

via a hinge that allows the blade to freely flap up and down. Fully articulated systems allows 

flapping hinging as well as a hinge that provides the blade the freedom of movement to swing 

fore and aft through the rotation. These hinges are often offset from the axis of rotation so that 

even with the freely flapping blades, a moment may still be imparted upon the fuselage 
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4.2.3 Teetering Rotor System 
 

 

Figure 4.6 Teetering Rotor System [15] 

 
The teetering rotor blades teeter much like a seesaw found on a playground (figure 4.6). This 

allows the blades to flap together in synchronized motion. This system is the lightest of the three. 

However, it imparts zero moment to the helicopter directly as a result of its flapping. This type is 

limited to only two bladed systems. 

 

Figure 4.7 Uh-1 Iroquois, photo courtesy of wikipedia.com 

 
Choosing a specific rotor system will have profound effects on the simplicity of the model, as 

well as contribute to the layers of complexity involved with its construction. For the purposes of 

the analysis, the teetering rotor system will be chosen. This provides the advantage of limiting 

the lifting bodies to only two rotor blades. It also allows for the dynamics of the rotor disk to be 

observed independently of the rotor hub and then apply those findings at a later time. With 

regards to the phasing of the blade flapping, the two bladed teetering system will possess phases 

at 90 degrees which will simplify the analysis. 
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4.3 Static Versus Dynamic Stall 

An area of aerodynamics that is of particular importance is the occurence of stalls. While stalls 

can be classified in several different categories that manifest themselves in specific ways, there 

are two types that are of particular interest here. 

 
The first type of stall to be discussed is the static stall. Static stall occurs in the context of steady 

aerodynamics when the angle of attack of the lifting surface in question exceeds its critical angle 

of attack. Angles of attack in excess of the static critical angle of attack result in a loss of lift. 

The recovery from a stall condition is achieved by reducing the angle of attack of the aircraft 

below the critical angle of attack. For dynamically stable aircraft, the physical manifestation of 

this is a natural nose-down tendency of the airplane so that the recovery can be achieved. An 

emphasis should be placed on this being a stable aerodynamic occurrence. Figure 4.8, from 

NASA, provides a visual representation of effects that stall has on airflow. 

 

Figure 4.8 NASA illustration demonstrating the change in flow after the airfoil has reached 

critical angle of attack[17] 

 
Dynamic stalls occur in an unstable environment, such as the constantly changing state of a 

rotary-wing. In the next section, a discussion about blade flapping will expose the idea that the 

angle of attack experienced by the rotor blade constantly changes periodically through the 

rotation about the rotor shaft. This dynamic state means that the way that stall is evaluated must 

be examined differently than in static situations. There are two elements of dynamic stall that 
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separate it from static stall. The first is that the critical angle of attack for a dynamic stall is often 

higher than that of the static stall. In practical terms, this means that a greater coefficient of lift is 

achievable. The second element is that there is a delay in the onset of a dynamic stall. Rotor 

blades are spinning about their axis at such a high angular rate that often the blade can be pushed 

beyond critical AOA and recover below a “safe” AOA before stall can onset. Eqn. 4.2 shows an 

empirical relationship between static and dynamic critical angles of attack that can be utilized to 

approximate dynamic stall relative to static stall [13]. 

 

  (4.2) 

Where  is a function of Mach number and is obtained from airfoil data. 
 

 

 
 

Figure 4.9 Dynamic vs static stall, CL vs AOA [18] 

 
The severity of the dynamic stall is dependent on the severity of the flow separation. Dynamic 

stall responses, due to the aforementioned lag or delay, do not recover in the same way that static 

stalls do. Rather than simply reducing the AOA below the critical angle to restore attached flow 

and lift, the angle of attack must be reduced significantly. Figure 4.10 Shows how the deeper the 

stall, the further the AOA must be reduced in order to recover. 
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Figure 4.10 The dynamic stall CL as the AOA is decreased after inducing stall. Solid lines 

denote increasing, dashed lines denote decreasing [18]. 

 
The subject of dynamic stall and unsteady flow is an area of study that is highly complex and 

worthy of an in depth study on its own. Needless to say, it is beyond the scope of this study, but 

would be an area to explore if the subject of this study were to be expanded upon in an effort to 

create a model with higher fidelity. It is important to understand the physical occurrences to aid 

in analyzing and understanding the angle of attack results later in the study. 

 

Chapter 5 - Blade Flapping 

5.0 Rotor Disks are not Gyroscopes 

It is not uncommon for the motion of helicopter disks to be compared with and evaluated as 

gyroscopes. The apparent precession that occurs 90 degrees out of phase on a rotor disk that has 

an applied force looks and behaves just like a gyroscope. However, it is helpful to realize that it 

is not actually gyroscopic precession that occurs in a rotor disk whose blades are allowed to flap 

independently. While it is, strictly speaking, outside of the scope of this analysis to dissect the 

differences between a gyroscope and what a rotor disk is, it may provide some insight to the 

flapping motion that occurs. 

Recall that a gyroscope is a rigid body that spins with angular momentum. A moment applied to 

the gyroscope causes the angular momentum vector to change and triggers the precession. The 

key in this instance is that the rigid body, by its very nature of being rigid, is directly influenced 
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by be an applied force which causes a moment to the body. In this context, that force would be 

the lifting force, or net lifting force seen by the disk. 

Now consider what is considered the most basic and fundamental rotor system that can be 

analyzed: the articulated rotor blade with a hinge located at the center of rotation. The purpose of 

the hinge is two-fold. First, the blades must be allowed to bend and flex in order to naturally 

compensate for the dissymmetry of lift that the disk generates. This is the flapping that will be 

examined with a higher degree of scrutiny later. Without flapping, rotorcraft flight would not be 

possible. Early helicopter design prototypes were engineered with rigid rotor blades that were not 

allowed to flap, which led to disastrous consequences. It was realized that flapping was, indeed, 

necessary. Helicopter blades are going to flap whether or not they are attached to a hinge. 

However, there are extreme loads that the blade must endure. If the blade is hingeless, then the 

blades root must be strong enough to take the stress. Some helicopters are designed this way, 

however, it is fairly common for helicopters to have either a teetering or articulating rotor system 

to eliminate any stresses and moments on the rotor hub, thus allowing the blade to be much 

lighter. 

 

 

 

 

 

 

 

 

Figure 5.1. A fully articulated blade with a flapping and lead-lag hinge [15] 

It is important to emphasize that a hinged rotor blade imparts zero moment to the hub. 

Effectively, the flapping motion is completely independent of the rest of the airframe. Helicopter 

blades that are spinning in motion have three forces acting upon them: The weight of the blade, 

the lifting force, and the centrifugal force due to the spinning. Drag is also present, however, 

since L >> D, drag will be neglected for the time being. 
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Figure 5.2. Forces acting upon the rotor blade [13] 

The centrifugal force plays the largest role in preventing a rotorblade from flapping upward and 

coning to high degrees. It behaves and is often modeled as a spring force counteracting the lift 

force. 

This lift force varies as the blade rotates about the axis of rotation while the other forces remains 

the same. The blade will flap up or down until equilibrium between the three forces are achieved 

and constantly flaps throughout the rotation to achieve and maintain said equilibrium. The 

flapping has the benefit of adjusting the effective angle of attack seen by the blade to help 

balance and maintain a symmetric lift distribution. More on that later, but for the moment, 

consider the physical implications of an articulated blade. If there is zero moment being imparted 

upon the hinge, then the blade is free to move within its degrees of freedom and there will be no 

real influence to the rest of the system. This allows us to analyze each of the blades separately 

and individually, but it is also the first step in disconnecting the concept of helicopter control 

from gyroscopic precession. 

The next question is: how is the helicopter then controlled if not through gyroscopic precession? 

Let us look at the physical process of the rotorcraft in forward flight. For the sake of simplicity, 

we shall make the assumption a helicopter in hover is in an ideal environment with no 

perturbations or disturbances. Therefore, a helicopter in the hover flight regime does not flap but 

simply cones. Upon taking off, the lift generated by the blades causes the blades to flap up until 

it reaches a state of equilibrium with the centrifugal and weight forces. There is a constant cone 

angle formed by the blades through the rotation as a result (Figure 5.3). In order to induce 

forward flight, and control input is required to change the state of equilibrium. 
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Figure 5.3. The change in coning angle with an increased loading [19] 

Per convention, let us assume that the reference frame of the helicopter disk starts at zero degrees 

with zero pointing toward the aft of the helicopter, toward the tail, 90 degrees points to the 

starboard (right) side, 180 degrees points forward, and 270 degrees points to the port (left) side 

of the helicopter, as depicted in figure 5.4. 
 

Figure 5.4.. The helicopter reference frame with a control input inducing forward flight [15] 

Forward flight is achieved by a control input which induces a change in the incidence of the 

blade as it rotates so that more lift is generated at 270 degrees. The aircraft will exhibit a 

response 90 degrees later when it pitches forward just as one might expect in gyroscopic 

precession. What is actually happening is that more lift is being generated on the retreating side 

around 270 degrees which is causing the blade to flap up, which carries with it momentum. The 

rotor disk will rotate(precess), or pitch, forward until forward velocity is built up. Once this 

occurs, the advancing side of the blade start generating more lift which induces a flap up motion. 
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This flap up motion decreases the angle of attack. Flapping down increases the angle of attack. 

The steady state flapping motion throughout the rotation is achieved when the forces are in 

equilibrium for the given control input. In essence, the control inputs are effecting a change in 

the equilibrium location of the rotor disk. 

The change in angle of attack due to flapping as caused by the vertical velocity component that is 

introduced as a by-product of the flapping. It is through this specific mechanic that the rotor disk 

naturally accounts and compensates for what would ordinarily be a dissymmetry of lift situation. 

Figures 5.5 and 6.5 demonstrate how the angle of attack changes with respect to the direction of 

the flapping. 

 

 
 

Figure 5.5. flapping up increasing angle of attack[15] 
 

Figure 5.6. flapping decreasing angle of attack[15] 
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Figure 5.7. Non-Rotating frame helicopter viewed from above[13] 

 

 
Standard convention for American made helicopters is that the rotor rotates counter clockwise as 

viewed from above. 

Some European helicopters companies, such as the French company Airbus, design their 

helicopters to rotate clockwise when viewed above. 

As is the case when evaluating lift over fixed wings, the most important part of the velocity that 

affects the blade is the perpendicular component. The equation representing this in non- 

dimensional terms is: 

  (5.1) 

Where is the angular velocity at the rotor tip, is the advance ratio , which is the ratio of 

forward velocity to rotor rotational velocity,  is the angle of rotation, and is the non- 

dimensional radius. 
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Figure 5.8. Velocity profile about rotation in forward flight 

In figure 5.8, it can be seen that the advancing side of the rotation will have a greater velocity 

than the retreating side. A simple association to the lift equation reveals that there would be an 

asymmetric distribution of the lift over the disk. A physical manifestation of this would be an 

uncontrollable rolling moment. Blade flapping is the key to countering this. 

 

 
5.1 Lead-Lag 

Despite being beyond the scope of this study, briefly exploring the mechanics behind the lead- 

lag phenomenon of the blade will be helpful in dissociating rotor disks from gyroscopes. 

As previously discussed, lift generated by the blade as it rotates about the shaft induces flapping 

motion. Figure 5.3 shows that as the flapping angle of the blade increases, then the effective 

radius becomes shorter. Recall that due to conservation of angular momentum, when the moment 

of inertia of an object is reduced, the angular velocity must increase in order to conserve angular 

momentum. The quintessential example of this is the ice skater example with which all engineers 

should be familiar. This same phenomenon occurs on each individual rotor blade as it rotates 

through a revolution. As the flap angle increases, the radius within the plane of rotation is 

reduced and the rotational velocity increases. The effect is that blade bends as it speeds up or 

slows down. The stresses of this are great and add to the stress experienced by the root. On 

strong, hingeless systems, the rotor blade is designed to be strong enough. For an articulated 

blade, an additional hinge is added to allow for freedom of movement within the plane. See 

figure 5.1. Centrifugal force is, again, responsible for maintaining a rigid-like appearance and 
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behavior to the blade. The lead-lag hinge allows the blade to swift for and aft as physically 

necessary to maintain angular momentum. 

One final discrepancy between gyroscopes and rotor disks is found in the implementation of 

hingeless and hinged blades with an offset. Articulated and teetering blades have a 1/revolution 

natural frequency that provides the 90 degree offset that we recognize in gyroscopes. Hingeless 

and offset hinges, however, produce a natural frequency of greater than 1/rev. Effectively what 

this means is that rather than having a 90 degree phase lag between force induction and dynamic 

response, it is found that the phase lag is in the 70-80 degree range. 

 

 
5.2 Modelling the flapping 

In order to appropriately determine the rotorcrafts stability and, later on, its behavior, a 

modelling of the blade flapping must be conducted. This evaluation is critical in that it 

determines the mechanics behind the angle of attack changes that occur as a result of the flapping 

that allows the rotorcraft to maintain a symmetric, and thus stable, lift distribution along the rotor 

disk. 

There are two methods that can be used to determine the flapping motion, both of which will be 

explored here. The first to be examined is the differential equation of motion of blade flapping 

that is solved as a numerical solution utilizing RK45. To facilitate this, Matlab ODE45 function 

is used. 

The second method is a Fourier series solution. As a reminder, the Fourier series is as follows: 

  (5.2a) 

For the purposes of this analysis, only the first harmonics are necessary to accurately depict the 

flapping motion of a rotor blade, and thus the series can be truncated.  represents the coning 

angle of the blades as they rotate through the reference frame.  and  are the coefficients for 

the series that represent the flapping angles through the longitudinal and lateral sections of the 

rotation. Thus: 

 

 
  (5.2b) 

Wayne Johnson [13] provides a development for the Fourier coefficients to be utilized in the 

evaluation which come from the development of the EOM’s. The equations of motion will be 

developed first so as to move on to the two solutions. 
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The EOM’s that were evaluated for flapping stability in the previous section will be reexamined 

with the lift of the blade, as a forcing function, in mind. 

Figure 5.2 shows the free body diagram of a freely articulating blade and the examination of a 

particular particle. 

As figure 5.2 shows, there are three forces acting on the mass element. 

1) The inertial force that opposes the flap motion, given by:  

Where r is the radial distance from the hinge 

2) the force referred to as centrifugal force , which is directed outward, radially, 

and possesses a moment arm . 

3) The force normal to the blade. For small angle approximation, this is simply the lift 

force, L. 

The reader should realize that centrifugal force always acts radially outward and opposes the 

flapping motion. As a result, it can be evaluated as a spring-like force. The reader should also be 

reminded that centrifugal force is not an actual force, but rather a reaction to centripetal 

acceleration. It is simply being explained as a force in order to model the dynamics. 

There is no hinge-flap spring in this system, therefore the sum of the moments must equal zero. 

This leaves us with: 

 

 
 

 

 
Collecting terms: 
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Recall that the moment of inertia can be defined as: 
 

Utilizing dimensionless quantities the EOM’s become: 

  (5.3) 

The Lock number is the dimensionless parameter that represents the ratio of aerodynamic to 

inertial forces, and it contains the only influence of rho in the dimensionless analysis. 

 

 

 
 
The equations of motion become: 

 

 

The dimensionless lift force is: 
 

 

and   are defined as: 
 

 
 

(5.4) 

 

 

 
 

(5.5) 

 

 

 
(5.6) 

 

 

(5.7) 

 
(5.8) 

 

Not that term contains both and  which will play a critical role in correctly evaluating the 

flapping angle and response of the blade. 

Also, 
 

  (5.9) 

  is collective input 

  is pitch cyclic input 

  is roll cyclic input 
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The aerodynamic flap moment is thus:                                         (5.10) 

At this point, the utilization of differential equation and the Fourier series differ somewhat. With 

the differential equation, the above development suffices. It can be evaluated utilizing RK45 or 

similar numerical solver solutions. The Fourier Coefficients require more development. The 

development is lengthy and complex, and will not be developed here. The inquisitive reader is 

invited to explore the derivation made by Wayne Johnson[13]. 

The result is a set of algebraic expressions that can be solved for the individual harmonics: 

  (5.11) 

  (5.12) 
 

 

(5.13) 

These are then substituted back into the Fourier Series (eqn 5.2b) and evaluated for 

. 
 

The actual execution of the Fourier series is straight forward, as it all it requires is an evaluation 

of the series with respect to . It must be noted that the Fourier Series solution is that of the 

steady state and that a single revolution is sufficient. 

Once either solution is evaluated the inflow angle and the effective angle of attack can be found. 

The inflow angle ) is the angle as a result of the velocity components tangential and 

perpendicular to the velocity. 
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Figure 5.9 Relationship between pitch angle, inflow angle, and angle of attack[13]. 

As shown in figure 5.9, the effective angle of attack is found with , where 
 
 

(5.14a) 

With small angle approximations, 
 
 

. (5.14b) 

5.3 Results of flapping motion 

Now, with the appropriate physics worked out, an evaluation can be executed. A Matlab script 

was written to evaluate the both the Fourier series solution as well as the differential solution. 

For the purposes of this analysis, the primary method for manipulating solutions will be the 

differential solution. 
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Figure 5.10 a) Fourier vs ODE45, b) Induced inflow Angle of Attack, c)Effective Angle of 

Attack, d) Flapping Angle vs Effective AOA 

 

 
5.4 Benchmarks 

In order to evaluate the accuracy of the results, it is necessary to compare them against other 

published works so as to validate the findings of the analysis. Majhi and Ganguli[20] perform an 

analysis that includes evaluating the flapping response as well as the induced inflow angle and 

the effective angle of attack under dynamic stall conditions. 

The conditions for the benchmark include: 
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(c) Fourier and ODE45 Flapping Response (d) Induced Inflow Angle 

Figure 5.11 Benchmark response [20] vs calculated response 

It can be observed that the results are fairly similar in their manifestations with a difference in 

several degrees of flap. This is believed to be largely due to the dynamic stall modelling that is 

utilized by Majhi and Ganguli which manipulates the coefficient of lift for sections of the 

rotation that achieve a higher than critical AOA. 

 

Figure 5.12 Comparing benchmark Effective AOA [20] with calculated AOA 

Dynamic stalling can occur in the rotation, however, unlike a static stall, dynamic stall occurs 

quickly enough that the stall does not have time to physically affect the system to a high degree. 
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For practical purposes, a dynamic stall will result in a lowering of the coefficient of lift to a small 

degree and is not an issue as long it is not allowed to develop too far. Figure 5.11 and 5.12 show 

good agreement between published works and the calculated analysis. This confirms the validity 

of the methodology and it will be used to continue the analysis in the next section. 

 

 

Chapter 6 Flapping Analysis 

6.0 Flapping Analysis of the flapping hinge 

In the previous chapters, the theory and derivations were developed in order to provide the 

foundation for an effective analysis. A Matlab script was written so that an initial analysis could 

performed and compared against benchmark data to serve as a validation of the methods and 

models used. With a successful validation of the methodology, it is now possible to perform 

simulations of varying parameters for predictive behaviors of the rotor dynamics. 

 
In order to stay relevant with the current development of real world aircraft, a comparison will be 

made utilizing parameters that represent specific airframe and mission requirements. Boeing and 

Sikorsky (Lockheed) have partnered to develop a suitable replacement for the UH-60 

Blackhawk. The aircraft that has been prototyped as a technology demonstrator for such a task is 

currently known as the SB>1 (figure 6.1). The technology utilized by the SB>1 is based and 

derived from the development of the S-97 Raider (figure 6.2), which has been mentioned several 

times throughout the course of this study. 

 

 
Figure 6.1 SB>1 Defiant Technology Demonstrator. Photo courtesy of 

LockheedMartin.com[21]. 
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The S-97 Raider is also a technology demonstrator whose design intent is to provide the same 

capabilities as the SB>1 on a smaller scale to fulfill mission requirements previously performed 

by the US Army’s OH-58 Kiowa. 

 

Figure 6.2 S-97 Raider Demonstrator. Courtesy of LockheedMartin.com [22] 

 
Both aircraft are still in their proof-of-concept testing phase. Presumably, the details on both 

projects are largely classified. However, some parameters can be extrapolated based on what 

little information has been released to the public and on what aircraft they are intended to 

replace. This analysis will focus primarily on the SB>1, which is designed to replace the UH-60. 

Any unknown parameters will be filled by taking the UH-60 equivalent. 

 
Table 6.1. Provides the relevant parameters and flight conditions for the analysis. All data 

contained in the table comes from the UH-60, with the exception of the maximum speed. A 

speed of 126 m/s (244 kt) far exceeds the capabilities of any helicopter in the world currently 

flying. That particular velocity is the target speed of the SB>1 and will be made possible by the 

innovative design characteristics of the airframe. As of the writing of this report, the SB>1 was 

still in testing and had not yet established a maximum speed. The S-97 is further along in the 

testing process and, as of this writing, had reached a speed of 102.8 m/s (199 kt) with greater 

speeds anticipated as testing progresses. 
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Table 6.1 

Parameters 

 

 
 

 Blade Span Chord Flapping 

Inertia,  

Airfoil Coefficient 

of lift slope 

78 m/s 126 m/s 8.18 m 0.527 m 20726 kg 
 

 

SC1094R8 0.1 1/deg 

 
The analysis is greatly simplified if a singular distance along the span is evaluated and the 

flapping angle ) is utilized for the whole span. Figure 6.3 shows the plot of the resulting angle 

of attack, per the benchmark conditions, along the span. The span was divided into 30 sections, 

ranging from 30 - 90 percent of the span. The low end of the range of 30 percent was chosen to 

avoid the reverse flow regions of the rotor disk. The upper range, 90 percent, was chosen 

because there are lift loss at the tip of the rotor blades, and evaluating the flapping based on the 

rotor tip would not yield results with an accurate enough degree. 

 

 
 

Figure 6.3 A plot of the angle of attack distribution along span from 30-90 percent of span 

 
It can be observed from figure 6.3 that, with the exception of the sections that are closer to the 

root of the blade, depicted by the less consistent plots on the top side of the wave, the angle of 

attack at each span section is fairly consistent. There can be seen the variation in AOA is only a 

couple of degrees along the span. Following this observation, the distance of 75 percent of the 

spane was chosen, and the corresponding flapping angles were utilized for the evaluation of the 

flapping. 
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6.0.1 Flapping Analysis of Hinged Rotor Blade 

The first several analyses will be conducted within the context of the hinged flapping blade. It 

will be assumed that the flapping hinge is located at the shaft, which will mean that there is zero 

moment generated by the flapping. Figure 6.4.illustrates the nature of the flapping hinge. Note 

that where the figure states “flapping hinge” is where the shaft is assumed to be. The advantages 

to the hinged rotor blade is the simplicity in design and its light weight. From the standpoint of 

flying qualities, the hinged blades are able to absorb most perturbations with little dynamic 

response at the cost of sensitivity. 

 

 

Figure 6.4 Illustration of a hinged flapping blade [23] 

 

 
6.0.2 Flapping Analysis of Hingeless Blade 

Hingeless rotor blades, shown in figure 6.5, manifest their flapping in physical bending of the 

rotor blade. This results in a moment being imparted onto the rotor hub. The flying 

characteristics are manifested in higher sensitivity and greater amounts of control. It also reduces 

the degree to which flapping can occur, which means a hingeless system can be pushed further 

than its hinged counterpart. Disadvantages include a lesser ability to absorb perturbation, such as 

turbulence, and added weight due to the needed strength. The S-97 and SB>1 both are touted to 

have rotor systems with rigid blades. It is probable that the rigidity of those airframes far exceed 

that of typical hingeless blade helicopters. However, for the time being, a hingeless system will 

be evaluated as though it is standard in nature. 



49  

 
 

Figure 6.5. Illustration of hingeless rotor system. Image courtesy of researchgate.com 

In order to evaluate the hingeless dynamics, the equations of motion that have already been 

developed must be altered slightly. It is possible evaluate hingeless rotors as articulated blades 

with a hinge-offset as long as the flapping frequency found in the EOM’s are adequately high 

enough. The EOM’s are as follows: 

 

 
 

 
Where, 

 

 

(6.1) 

 

 

 
(6.2) 

 

The variable ‘e’ is simply the percent offset of the rotor hinge from the rotor shaft. Typically, 

that percentage is about 10% or e = 0.1. 

 
For the flapping frequency, , typical values are  = 1.10-1.15 [13]. 

 
 

6.1 Hinged Rotor Flapping Analysis 

The flight conditions for the first analysis will take place in a straight and level flight regime so 

as to simulate the pusher prop abilities of the S-97 and SB>1. 

 
Figure 6.6 provides insight that has been previously discussed, as well as indications as to the 

severity of the asymmetric lift distribution. There can be no doubt that at any condition other 

than hover with no wind, an asymmetric distribution will develop due to the rotational nature of 

the rotor blade. This case, with 1 degree of collective input at cruising velocity is certainly no 

different. However, the severity, or magnitude of the responses are quite small. With less than a 

2 degree total blade deflection, the effective angle of attack that results is also less than two 
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degrees. In this instance, there appears to be a possible correlation between blade deflection and 

effective angle of attack. 

Figure 6.6 (a-b) Hinged rotor with 6 degrees of collective at 78 m/s 
 

Figure 6.6 (c-d) Hinged rotor with 6 degrees of collective at 78 m/s 

 
Figure 6.7 continues the trend of blade flapping appearing to be proportional to the effective 

angle of attack. Again, at cruise velocity but with 8 degrees of collective input, these conditions 

generate a response that takes the airfoil to the limits of its lift generating angles of attack. Other 

than detecting what appears to be the maximum control input for this particular flight regime, 

there is little detail of significance that is not already suspected. The sinusoidal nature that is 

typical is found here, as well as the 90 degree phase lag that is expected with respect to the 

flapping angle and AOA. 

 
However, what is noteworthy is the small range of collective inputs that provide an AOA that 

stays both above zero and below the critical AOA. 
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Figure 6.7 Hinged rotor with 8 degrees of collective, at 78 m/s 

 

 
Figure 6.8, maintains the same parameters, however, the cyclic input has been set at -4 degrees, 

which results in a nose down attitude. This flight condition is approximated to simulate the 

rotorcraft flying as a standard helicopter would, so a 4-degree tilt in the rotor disk, to correspond 

with the -4 degree control input, has been implemented into the model. 

 
Implementing a 4-degree tilt in the disk dramatically changes the dynamics response of the 

blade, particularly when evaluated with the flapping/AOA proportionality. Approximately 4 

degrees of flapping result in an AOA range of 12 degrees. 

 
This is also the first graph where the flapping angles and the induced AOA angles do not 

intersect at any time. While that is not necessarily significant physically, it does show that a 

cyclic input has the effect of shifting up, or transforming, the angle of attack distribution to 

achieve greater angles. 
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Figure 6.8 Hinged rotor with 8 degrees collective, -4 degrees pitch cyclic (nose down), at 78 m/s 

 
The following evaluations for the hinged rotor blade will be taken with a velocity of 128.6 m/s, 

which corresponds to the intended maximum forward velocity of the SB>1. 

 
Figure 6.9 shows that the minimum controllable collective input is 1 degree. Aside from that 

now determined boundary layer, dynamic response is as expected, with a proportional 

flapping/AOA angles. 
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Figure 6.9 Hinged rotor with 1 degrees of collective at 128.6 m/s 

 
Figure 6.10 shows a significantly higher set of angles for a collective input of 5 degrees, which is 

expected for this flight regime. It would be expected that for forward velocities of this magnitude 

that a lower angle of attack would be desirable in order to reduce drag. 

 

 

Figure 6.10 Hinged rotor with 5 degrees of collective at 128.6 m/s 
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6.2 Flapping Analysis of Hingeless Blade 

6.2.1 Comparison Against the Benchmark Case 

In the previous chapter, the method of analysis for hinged flapping was compared against 

benchmark evaluations and found to be in good agreement. By way of a comparison between 

hinged and hingeless flapping, figure 6.11 demonstrates the discrepancy between the flapping 

types. 

 
Careful scrutiny of figure 6.11 shows, qualitatively, the difference in the phase lag related to the 

application of force on the disk and the response of the aircraft. As it is commonly understood 

amongst helicopter pilots, engineers, and helicopter enthusiasts alike, the hinged model 

demonstrates a 90-degree offset. The peak of the hinged AOA occurs at the 270-degree position. 

The peak of the flapping occurs at the 180-degree mark because it is that physical occurrence 

that prevents the rotor disk from continuing to precess in a forward pitching motion. These 

motions occur 90 degrees out of phase from each other. 
 

Figure 6.11 Comparison of Hinged vs. Hingeless under the benchmark conditions 

 
By contrast, these same reactions on the hingeless blade occurs in a similar fashion, however, if 

the data points are examined closely, which was done for this analysis but not shown, then the 

phase shift is found to be 72 degrees. This is a characteristic of articulated blades with a hinge 

offset and hingeless blades which can be simulated as such. This is due to the flapping frequency 

being greater than 1/revolution for these types of rotors. The reason for this behavior is the lift 
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variation during blade transit, with increasing lift causing the blade to flap up. In a subsequent 

chapter, the analysis of the aircraft transitioning from hover to propelled straight and level flight 

will be examined to help further the understanding of the physical manifestations that occur in 

blade flapping. 

 

6.2.2 Analysis of Hingeless Flapping in Various Conditions 

The following figures demonstrate the flapping dynamics of hingeless blades. As in previous 

sections within this chapter, the models will be examined in multiple control-input states, while 

maintaining straight and level flight, for both cruise and maximum velocities. 

 

Figure 6.12 Hingeless rotor with 1-degree of collective at 78 m/s 

Figure 6.12 shows the response with a collective input of 1 degree at a forward velocity of 78 

m/s. At this velocity, this is the lowest collective value that can be held while maintaining a 

positive angle of attack. As previously mentioned, while the airfoil in question will still generate 

positive lift at -1 degrees AOA, for the sake of this analysis, only control inputs that result in 

positive angles of attack will be considered. 
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Figure 6.13 Hingeless rotor with 9 degrees of collective at 78 m/s 

Figure 6.13 Shows a 9-degree collective input at cruise velocity. This value is the largest control 

input for this velocity that does not induce an AOA that exceeds the critical angle of attack. One 

of the characteristics that is most evident when in contrast to hinged blade are the flapping 

angles. Similar conditions for the hinged blades result in a flapping angle difference of 12 

degrees from top flap to bottom flap. While this in this case, the flap difference is 4 degrees. 

 

 
Figure 6.14 Hingeless rotor with 13 degrees of collective at 78 m/s 
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Figure 6.14. Shows the response for 13 degrees of collective. The induced angle of attack at its 

peak is between 18 and 19 degrees. The flapping angle ) achieves negative values that 

correspond to the peak AOA. As with other hingeless examples, the angle at which the maxima 

and minima occur offset of the 90-degree increments. 

 

 

Figure 6.15 Hingeless rotor with 4 degrees of collective at 126 m/s 

Figure 6.15 shows a 4-degree collective input at the maximum anticipated velocity of 126 m/s. 

This is the first case of hingeless flapping at this velocity that has been examined thus far. As 

demonstrated in figure 6.15, the response at this velocity is much more asymmetric and departs 

the from the usual sinusoidal pattern that is common in slower flight regimes. This particular 

case is also inverted from other typical examples, where the flapping sees its highest positive 

value on the retreating side rather than the advancing side. Conversely, the AOA shows its 

highest positive value on the advancing on the advancing side and lowest value on the retreating 

side. This is a very interesting response, because a vast majority of the lift is generated toward 

the rear of the disk. It’s possible that this is an unstable manifestation. 

Figure 6.16 Shows a higher collective input for the same maximum velocity. Unlike the previous 

figure, this response shows peaks in the typical regions of the rotation. The steep slope of the 

angle of attack indicates that the rate of change of the angle of attack with respect to the rotation 

is quite high. The prominent peak would indicate that that particular region of the disk requires a 

high degree of lift in order to balance out the forces and maintain the rotational frequency of the 

rotor blades. 
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Figure 6.16 Hingeless rotor with 8.5 degrees of collective a126 m/s 

 

 

6.3 Conclusion 

The goal of this analysis was to establish clearly defined limits of rotary wing controllability in a 

straight and level flight regime. The analysis provided a glimpse into the minimum and 

maximum limits of control input that result in minimum and maximum dynamic responses. The 

analysis is far from all encompassing, as it neglects several key aerodynamic occurrences that 

should not be ignored in the event that a true to life response is to be evaluated. However, it does 

provide a reasonable baseline from which to make predictions. 

Common trends include the predictable sinusoidal motion of blade flapping and its 

corresponding angle of attack. Additionally, it was observed that there appears to be a direct 

proportionality in flap angle and angle of attack for hinged blades. The same cannot be said 

about hingeless as there is a clear distinction between the proportionality of hinged versus 

hingeless. In the case of the hingeless blades, the flapping angle range was dramatically less than 

that of the subsequent angle of attack. 

Another distinction between the two systems are the phase lag of the flapping to the AOA, which 

directly corresponds to how the rotor disk is controlled. Hinged disks show a 90-degree phase 

lag, while hingeless show approximately 72 degrees. 
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Chapter 7 Evaluating Alternate Conditions 

7.0 Taking Advantage of Having a Coaxial Rotor 

The following assessment is completed by modelling the acceleration of the helicopter with 

respect to the revolutions of the blade. The purpose of this is to evaluated the dynamics from one 

velocity state to another. For example, from hover, a zero velocity condition, to cruise velocities. 

A crude approximation of velocity can be made, assuming an arbitrarily defined acceleration, 

with the following relationship: 

 
V = at (7.1) 

 
Where, 

 
V is the velocity of the aircraft, ‘a’ is its acceleration, and t is the elapsed time in seconds. The 

passage of time can be related to rotation rate as such: 

 

  (7.2a) 

 
Solving for t, 

 

  (7.2b) 

 
This is easily substituted for time in order to approximate the velocity of the rotorcraft with 

respect to rotation angle for user defined parameters within the MATLAB script written for this 

analysis. 

 

  (7.3) 

For the following transient analyses, the rotorcraft will be assigned to a flight regime. The initial 

conditions are always set to zero, so the transient behavior will require time to stabilize before it 

can be considered the baseline for the flight regime. Once that has been achieved, the input 

parameters will be changed and the response will be plotted to a substantial enough degree so 

that it gives some insight to the behavior of the system. 

 
Figure 7.1 shows the response of a helicopter in a hover state. This initial transient response that 

makes up the first 10 revolutions is simply the model damping out to steady state from the initial 

conditions of zero. Beginning at revolution 16, the system began accelerating forward at 2 m/s so 
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that the target velocity of 20 m/s would be achieved in 10 seconds. The control input for this 

simulation is 7 degrees of collect with zero cyclic input. Figure 7.1 continues for an additional 30 

revolutions and is truncated prior to demonstrating steady state. 

 
 

 

Figure 7.1 Transition from hover to 20 m/s at 7 degrees collective for 45 total revolutions 
 
 

Figure 7.2. Same flight conditions as figure 7.1 with additional revolutions to include steady 

state 
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Figure 7.2 shows the same flight condition as figure 7.1, but it extends to steady state and 

includes 115 total revolutions. It can be seen that when the hover condition steadies out, the 

flapping angle and angle of attack remain constant until the acceleration begins. As the velocity 

increases, both the flapping angle and the AOA become more pronounced and effective. The 

adjustment of collective as velocity increases, as would occur in the real world, is not included. 

 

7.1 Dynamic Response From Straight and Level to Nose Forward 

Figure 7.3 demonstrates conditions that represent the transition from straight and level flight into 

nose forward flight. The practical application would be starting in a condition that is driven by 

the pusher prop and making a change where the rotor disk is pitched forward to simulate the 

standard flight characteristics of helicopter flight. 

 
As with all of the cruise flight condition representations, figure 7.3 represents a flight regime of 

73 meters per second. The initial conditions have been assigned to represent straight and level 

flight which includes no pitch to the rotor disk. The beginning of the figure assumes an 

instantaneous -4 degree cyclic pitch input and an instantaneous 4 degree nose down pitch of the 

rotor disk. 

 

 
 

 
Figure 7.3 Cruise 78 m/s instant change to -4 degrees cyclic and 4 degrees nose down, collective 

3 degrees 
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Figures 7.3 and 7.4 show how the transient state of the system differs from previous analyses. 

The transient state takes 6 full revolutions to reach steady-state. Close inspection of the flapping 

angle graph demonstrates the strong influence that the lift force has in forcing the flap motion. 

 

 

 
Figure 7.4 A close look at the angle of attack and flapping angle graph from figure 7.3 

 

 
Figure 7.5 represents a flight condition that begins at 78 m/s forward velocity with an 8-degree 

nose down attitude, 10 degrees of collective input and 8 degrees forward cyclic. The first four 

revolutions represent the transient state from initial conditions of zero and should be neglected. 

After the 1st regime has reached steady state, and condition change in induced. The second 

condition is an instantaneous change to a straight and level attitude, 12 degrees collective input, 

and zero degrees of cyclic. The point of interest is the response which takes place after the 10th 

revolution. 
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Figure 7.5 The change in flapping angle and AOA as flight conditions change 

 

 
As can be seen in the above figure (7.5), the revolution at which the control inputs are changed 

there is a clear disturbance in the trend as the blade adapts to the new conditions. Just short of the 

180-degree mark in the rotation, the AOA rapidly increases before decreasing dramatically. It 

can also be noted that the point in the rotation that the maxima and minima of the AOA occurs in 

different phases. For example, peak AOA prior to the input change takes place around the 90- 

degree position. By contrast, after the control change, the peak of the AOA occurs closer to the 

270-degree position. 

 
While not strictly necessary for the purposes of this study, the above analyses should provide 

some insight into the motion and vehicular dynamics of the helicopter rotor blades helping to 

solidify an understanding of typical reactions and responses that should be expected from a 

helicopter. 
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Chapter 8 Evaluating The Coaxial-Pusher Configuration 

8.0 Taking Advantage of Having a Coaxial Rotor 

So far in this study, the rotor flapping dynamics have been evaluated on an individual basis in 

both conventional helicopter configurations as well as with a coaxial pusher configuration in 

mind. However, little consideration has been taken into accounting for optimization. Thus far, 

the modelling has been approached from the vantage point of simply adding a pusher-propeller 

to a helicopter allowing it to propel itself forward without requiring a tilt in the rotor disk. This 

was a necessary approach because the insight into flapping dynamics in that configuration aids in 

understanding the approach to optimizing a design. Moving forward, a focus on how the new 

family of coaxial helicopter is most likely designed will be evaluated. 

 
The technology that the S-97 and SB>1 are based on a technology demonstrator known as the 

X2. Unconfirmed sources on the portal to information, the internet, have suggested that the X2 

design achieves its speed goals in several ways that are fundamentally simple. The design 

characteristic that is the most impactful involves leveraging the ability to share the symmetric 

loading across both sets of rotor blades. As has been observed in the analyses in the previous 

sections, it has been seen that in order to compensate for the dissymmetry of lift caused by the 

variation in velocity about the disk, the blade flaps which results in an increase of the angle of 

attack on the retreating side. This increase of angle of attack directly translates to an increase in 

lift so the lifting force across the disk is balanced. However, this increase in angle of attack also 

increases drag. The most profound problem that this creates is that the increase in drag must be 

overcome by the engine of the aircraft. The effects are probably a non-issue in ideal operating 

conditions. However, when considering high-speed flight at high altitude with hot temperatures, 

then the drag penalty becomes far more severe. One of the engineering techniques that is used to 

overcome this problem is to create a system that allows the retreating blade to experience a lower 

angle of attack. The obvious advantage to the coaxial design is that the two rotor disks maintain 

the symmetry of lift. 

 
Recall how a helicopter control system works: the collective is the control input that adjusts the 

angle of the all of the blades simultaneously. The cyclic is the control input that provides 

directional control. It does this by tilting the swashplate in the direction of travel so as to cause 

the rotor blades to change pitch, periodically or cyclically, as they rotate about the shaft. Also 

recall the 90 degree offset of applied force and vehicle response. In order to induce the helicopter 

to propel itself forward, a force is applied at the 270 degree radial and the response occurs 90 

degrees later at the 0/360 degree radial, rotating the helicopter forward until equilibrium is 

established. This remains the same for a helicopter with a coaxial rotor system. The two rotor 

disks are counter-rotating, so for the sake of simplicity, rotor disk number 1 will be defined as 

having a rotational coordinate system that is conventional with zero degrees pointing toward the 

back of the aircraft and a counter-clockwise rotation. Rotor disk number 2 will be inverted in 
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such a way that 0 and 180 degrees match disk number 1, but is rotating clockwise, so that the 

270 degree radial is located on the starboard (right) side and the 90 degree radial on the port 

(left) side. Figure 8.1 illustrates this point. The rotating reference frames have been defined this 

way so that regardless of which disk is being referred to, 0-180 degrees is always the advancing 

side and 180-360 degrees is always the retreating side. 

 
 

 
 

  
 

Figure 8.1 Radial reference frames to disk one and disk two for a coaxial system 

 
Figure 8.2 demonstrates how a force applied to the respective disks 270 degree radial will result 

in the same rotation response. An implication of this is that a lesser degree of actual control 

output will induce that vehicle response on a coaxial system versus a conventional system. If the 

two disks were to be examined on the airframe itself from above, then the two images from the 

figures would be superimposed to create a disk planform area. The illustration demonstrates that 

controlling a coaxial helicopter requires that the applied forces on the respective disks be applied 

opposite each other when viewed on the superimposed planform. 

 
The previous explanations show how a standard coaxial helicopter is controlled. However, the 

X2 concept most likely utilizes a separate control scheme in order to achieve its designed intent. 

Recall that the one of the design goals was to minimize the angle of attack, and thus the drag, on 

the retreating blade. This can be achieved with a cyclical-only control input for generating lift. 

270 270 90 90 

Disk # 1 Disk # 2 

180 180 

0 0 
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Figure 8.2. Illustration of how a lift applied to respective 270-degree radials result in same 

response 

 

 
A cyclical-only control scheme for lift generation has unconventional implications for how the 

rotorcraft will be controlled.  Again, on a standard helicopter, the AOA needs to be the highest 

on the retreating blade to compensate for the symmetry of lift. However, if we do not care about 

the retreating side, then the focus will be on the advancing side. It was critical for the single rotor 

helicopter that the cyclic control input induce the lift at 270 degrees so that the aircraft could be 

precessed forward. However, in the case of the coaxial-pusher that is to remain straight and level, 

the cyclic inputs need to be applied in such a way that increases angle of attack on the advancing 

side, decreases angle of attack on the retreating side, while not pitching/rolling the aircraft in any 

way. 

 
Figure 8.3 demonstrates how this can be done in a fairly simple way. In order to achieve the 

aforementioned criteria, the applied forces on each of the disks must be applied in line with each 

other. In other words, in order to generate additional lift and increase the blade incidence, the 

applied force must be applied to the 0-degree radial on both disk 1 and disk 2. The response of 

disk one will be to roll the aircraft to the port (left) side about the 0-180 degree axis. The 

response of disk two will be to roll the aircraft to the starboard (right) side. These two 

counteracting responses will cancel each other out allowing for precise control of where to 

maximize the angle of attack along the disks without exciting any pitching/rolling responses. 
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Figure 8.3. Illustration of counteracting dynamic responses 

 

 
Before moving on to the analysis, there are a couple of items worth noting. First, if a pilot in a 

standard helicopter were to induce a left roll, it would require a left cyclic control input, and a 

right roll requires a right cyclic input. This means that in order to achieve the desired effect, the 

control equivalent would be a simultaneous left and right control input. 

 
From the perspective of the swashplates, this means that both swashplates are pitched opposite 

each other, which is counter to how a standard coaxial helicopter operates. Standard coaxials 

require that both swashplates pitch in the same orientation to achieve the desired condition. Since 

that is not the case in the pusher configuration, the degree of complexity is much higher. 

 
The fly-by-wire software used to control this system also needs to be sophisticated enough to 

handle the various flight conditions. In high speed flight, this opposing swashplate control is 

required and the aircraft is flown more like a fixed-wing aircraft. However, in lower speed flight 

regimes, the helicopter is flown and controlled just like a standard coaxial helicopter, and the 

connection between the control response and the control input needs to adapt and respond 

accordingly. 

 
The explanation above assumes that there is a 90-degree phase offset, which corresponds to a 

hinged blade. This would be partially impractical and partially dangerous in reality and a 

Disk # 2 Disk # 1 

270 

Response 

90 90 

0 
Applied 

Force 

0 

270 

180 180 
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hingeless blade would be utilized. This will alter the cyclic input required to achieve the desired 

condition and will add a layer of complexity to the analysis. 

 
Finally, the following analysis shows a single graph representing single blades of one of the 

disks. The reader is prompted to bear in mind that, for the purposes of this analysis, the dynamics 

response is simply a mirror image of the results shown here. 

 

8.1 Analysis 

Figure 8.4 displays the relationship between the aerodynamic coefficients and the angle of attack 

for the SC1094R8 rotorcraft airfoil. This is the airfoil that is used by the UH-60 Blackhawk, the 

aircraft that the SB>1 is replacing, which is why it was chosen to perform the analysis. It will be 

useful in showcasing the critical angles of attack as well as the corresponding coefficients of 

drag when necessary. 

 

Figure 8.4 Lift and Drag Coefficients vs AOA [1] 

 
Figure 8.5 shows the flapping angle and effective angle of attack for this analysis. Flight 

conditions take place at sea level at the cruise velocity of 78 meters per second. As previously 
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discussed, the collective and cyclic inputs are set to maximize the AOA on the advancing side 

without inducing a pitching moment on the airframe. In this condition, 𝑈0 = 8 degrees, 𝑈17 = 8 

degrees, and 𝑈17 = 10 degrees. These control inputs represent a flight condition that provides the 

maximum angle of attack, per figure 8.4, while maintaining low drag on the retreating blade. 
 

 

Figure 8.5. Velocity:78 m/s, Collective: 8 degrees, Equivalent cyclic roll: 8 degrees, cyclic pitch: 

10 degrees, max AOA: 17 degrees, min. AOA: -1 degree 

 
Note on the CL vs Alpha graph in figure 8.4 that the zero-lift angle of attack is approximately -2 

degrees. This angle of attack corresponds to a low drag coefficient as well. 

 
Figure 8.6 represents the same flight condition, that is maximum AOA with minimum drag, for a 

forward velocity of 126 meters per second. In this case, it was achieved by setting the control 

inputs to 𝑈0 = 8 degrees, 𝑈17 = 8 degrees, and 𝑈17 = 10 degrees. In this instance, the minimum 

angle of attack lies on the zero-lift line, which again corresponds to maximum lift and minimum 

drag. 
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Figure 8.6. Velocity:126 m/s, Collective: 8 degrees, Equivalent cyclic roll: 13 degrees, cyclic 

pitch: 11 degrees, max AOA: 18 degrees, min. AOA: -3 degree 

 

 
It appears from these data that a helicopter design of this nature may completely eliminate the 

possibility of inducing retreating blade stall while in its straight and level pusher-prop flight 

regime. The ramifications of this potential are simple, yet profound. This implies that the so 

called “speed limit” for rotary-wing craft would no longer be driven, in part, by the potential to 

stall the retreating blade. Rather, it would be dictated solely by drag and/or Mach effects. It is 

rumored that the X2 technology includes slowing down the rotor RPM at high speeds to help 

mitigate the problem of Mach divergence. A separate analysis would need to address whether the 

rotor tips might reach transonic speeds. 

 

 

Chapter 9 Evaluating Lift 

9.0 Analyzing the lift through rotation 

The final phase of the study will involve the investigation into the lift generated by the coaxial 

rotor blades as they are utilized in the pusher-propeller configuration. One of the main 

differences in calculating lift for the rotor system versus a fixed wing aircraft is the dynamic 

nature of the rotating system. It is almost as though the rotating system is in a constant state of 

transient behavior where the steady-state is seen only after the period has been completed. It is 

important to consider this when evaluating lift. Evaluating steady-state lift on a fixed wing 



71  

aircraft can be completed without any consideration for time. Any snapshot in time will yield the 

same result. However, in a rotary-wing system the position and relative airspeed is constantly 

changing and is dependent on time. By extension the time dependency can be viewed as being 

rotation angle dependent. 

 
This should make intuitive sense because lift is only generated by the blades in the space that 

they occupy in time. If a snapshot is taken so that a four bladed systems blades are located in the 

0, 90, 180, and 270-degree locations, the lift generated by the individual blades will look 

different from the snapshot that shows them located in the 45, 135, 225, and 315-degree 

positions. While it has not been proven in this analysis, a standard helicopter design should result 

in a lift distribution that is balanced throughout the entire rotation. However, the distribution in 

the pusher configuration will be different. The purpose of the analysis in chapter 8 is that angle 

of attack is nearly eliminated on the retreating side of the disk. This should translate to a 

dramatic reduction, if not elimination, of lift Up until this point, it has been adequate to evaluate 

the flapping dynamics of a single blade. When evaluating the total lift that is generated, however, 

it is no longer practical or realistic to evaluate a single blade. Rather, the blades should be 

evaluated simultaneously relative to each other. 

 
Before examining the state of all four blades simultaneously, a cursory investigation into a single 

blade will be made. Figure 9.1 shows the lift distribution of a single blade at a segment of the 

blade located at 75 percent of the span of the blade. The flight conditions mirror those of the 

cruise condition found in chapter 8 which was at sea level and at 78 m/s. 

 
Per the design intent the lift distribution shows maximum amount of lift at the 90-degree position 

with all of the significant lift being generated on the advancing side. Once the rotation has passed 

through the 180-degree position, the lift generation is below an appreciable amount. 
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Figure 9.1 Lift distribution of a single blade about the rotation 

 

 
Figure 9.2 shows lift distribution for all four blades through the rotation. Before proceeding to 

the analysis, there is something to be said about how the calculations were performed and how 

the graph should be read. Using conventional form, the starting location for blade number one is 

located at a radial azimuth of zero degrees. The reference of the horizontal axis on figure 9.2 

applies to blade 1 only. The other three blades are phased relative to blade 1 in 90-degree 

increments, as is consistent with a four bladed rotor system. For example, while blade 1 is at 0 

degrees, blade 2 is at 90 degrees, blade three at 180 degrees, and blade four at 270 degrees. Each 

blade has been calculated and phased appropriately so that the graph need only be read relative to 

blade 1. The figure shows a plot of the lift generated by each individual blade in its position 

relative to the first blade. Examining the zero degree mark, blade 1 is generating virtually no lift 

because is located at the 0 degree position. Blade 2 is shown to be generating lift at the peak of 

its cycle because its position relative to blade 1 is at 90 degrees which is the maximum lift 

generating position for this flight regime. Blades 3 and 4 are generating almost no lift because 

their positions, relative to blade 1, are at 180 and 270 degrees respectively and the system is 

designed not to generate lift in this region of the disk. 

 
Now examine the position where along the graph where 90 degrees would be found. Again, this 

is the blade 1 position and the lift is at the peak of the cycle, per the design. While blade 1 is at 

90 degrees, blade 2 is at 180 degrees, which is why its lift generation is approaching zero lift. 
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Simply put, the horizontal axis showing 0 to  references blade 1 only. The other lines depict 

the lift generated by the other blades in their own positions relative to the position of blade 1 on 

the figure. 

 

 

 

 
Figure 9.2 Lift distribution along a single disk 

The results of figure 9.2 should come as no surprise following the analysis of figure 9.1. 

Tracking blade 1, it obviously mirrors the plot of figure 9.1 because it is the same. Blades 2-4 

reflect the same with a phasing that is separated by 90 degrees between each blade. At the very 

top of the graph is a line that represents total lift that is generated by all of the blades for that 

azimuth position. It is cyclical in nature. 

The reader is prompted to recall that figure 9.2 simply represents one of the two rotor disks. Disk 

two is rotating counter to disk one. Graphically, this would appear to be the flipped image of 

what is seen in figure 9.2. Figure 9.3 shows the lift distribution of disk 2 if it were superimposed 

over the disk 1 distribution as shown in figure 9.2. 

To pick out the lift of each individual blade requires careful scrutiny, however, a couple of 

observations can be made with a cursory examination. First, it can be seen that the disk 2 lines 

complement the disk 1 lines in a way that should be expected in a mirrored system. Second, it 

should be noted that the two lines at the 1500 N position that represent the lift for the two disks 

are phased so that they mirror each other in a convenient way. Because these two lines represent 

the lift that is generated by both disks, they must be added together. The top most line of the 

graph represents the addition of the two lines and thus, represent the total lift that is generated for 
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each position about the rotation. While it is not perfectly so, it can be seen that the lift 

distribution is stable and very nearly constant about the rotation. 

 

 
Figure 9.3 Lift distribution through the rotation of both disk 1 and disk 2 

 

 
9.1 Evaluating the lift distribution about the rotation along the span 

Now that the lift for a single section of the blade span for all four blades has been demonstrated, 

an evaluation of the lift generated by larger sections of the blade span can be conducted. For the 

purposes of this analysis, the span will be evaluated from the 40 percent position to the tip of the 

blade. The reason for this is two-fold: first, this accounts for any blade-cutout that might be 

designed into the system. Second, this will also help to avoid the reverse-flow region of the rotor 

disk which can cause anomalies in the model that cause the simulation to break down. The 

conditions for the simulation include a forward velocity of 78 m/s with an air density at sea level. 

 

 
Figure 9.4 shows an evaluation that observes five sections of each blade. In assessments such as 

this one, it is best to make many small observations rather than few large ones in order to ensure 

that accuracy is of a higher fidelity. However, a graph with a small step size is convoluted and 

difficult to understand. The simulation will be conducted with the five steps first to determine the 

behavior and trend before increasing the fidelity. 



75  

 

 
 

Figure 9.4 Lift distribution of all eight blades on both disks utilizing 5 segments 

 

 
Figure 9.4 shows the lift distribution for all eight blades on both disks as they appear through the 

rotation relative to the planform area as dictated by disk 1. Finally, the top of the graph shows the 

total lift generation be both disks. It shows that the lift generated is 81,000 N, or 18,200 lbf. This 

is, of course, a rough estimation due to the large step size. 

Figure 9.5 shows the evaluation using a smaller step size that splits the blade into 30 sections. It 

can be seen that the numerous lines that show the lift of the individual blades are 

indistinguishable from each other. However, the important data point, the total lift, is still visible. 

This analysis should be deemed as having a greater level of accuracy. 

The lift generated, as shown in figure 9.5, is 75,000 N, or 16,860 lbf. This highlights the 

significance of utilizing smaller step sizes when performing an analysis of this nature. The 

difference in lift between the two cases is 1340 lbf, which is a significant amount of weight when 

considering potential use cases for the aircraft. 
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Figure 9.5 Lift distribution of all eight blades on both disks utilizing 30 blade span segments 

 

 
9.2 Evaluating the lift distribution while hot and high 

A critical design criterion in the modern era of helicopter design is a rotorcrafts ability to operate 

in high and hot conditions. The aircraft that stem from the X2 design, such as the S-97 and the 

SB>1, are intended to potentially see service in geographical locations such as Afghanistan. One 

of the challenges with operating in Afghanistan is that it is both hot and contains mountainous 

terrain. The “high and hot” conditions are the least ideal regime for a helicopter to fly in. Some 

helicopters, such as the UH-60 Blackhawk, are incapable of reaching certain destinations simply 

because they are too high. One of the design criteria for the X2 derivatives are that they can 

operate in high and hot conditions. 

Figure 9.6. Shows the lift distribution under the same flight conditions as the previous 

assessment with the exception of the air density. The air density chosen for the evaluation is 

consistent with density found at 10,000 feet and 95 degrees Fahrenheit. 
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Figure 9.6. Lift about rotation in cruise at 10,000 ft and 95 degrees Fahrenheit. 

As shown in figure 9.6, the max lift capable in the cruise condition at 10,000 feet and 95 degrees 

Fahrenheit is 55,000 N or 12,364 lbs. This is a significant loss of capability as it is 4,496 lbf less 

than what can be achieved at sea level. 

 

 

 

Chapter 10 Conclusion and Future Work 

10.0 Conclusion 

The purpose of this project was to explore the occurrence of retreating blade stall in coaxial 

helicopters, such as the X2 and its derivatives that are propelled forward with a pusher-propeller 

in straight and level flight. Modelling of the flapping dynamics of helicopter rotor systems was 

necessary to determine the resultant aerodynamics in order to pinpoint the conditions and 

occurrences of retreating blade stall. The model required the use of Blade Element Theory in 

conjunction with the blade flapping equations of motion to determine effective angles of attack 

that the rotor blades experience. The analysis followed a ground up approach where each 

element of the aerodynamics and vehicle dynamics was developed from fundamentals of 

helicopter theory. A Matlab script was then written to perform the necessary analysis and the 

results were compared and confirmed against benchmark data from previously published work. 

Analysis of blade flapping dynamics for a standard helicopter configuration was conducted at 

several flight conditions and the conditions for inducing blade stall were found. 
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The analysis was then conducted with the coaxial/pusher-prop configuration. Due to the straight 

and level flight regime and the coaxial configuration of the X2 design, manipulation of the rotor 

flapping dynamics could be executed in ways that are inconsistent with standard helicopter 

design. The coaxial design allows for a maximization of lift on the advancing side of the rotor 

disk while minimizing the lift on the retreating side. This results in an asymmetric disk loading 

that is compensated for and balanced by the counter-rotating second disk. The ramifications of 

this are simple: generating near-zero lift on the retreating side is a result of a near-zero angle of 

attack. Because the system is designed to have no lift or high angles of attack on the retreating 

side of the disk, then retreating blade stall is eliminated in this flight regime. Retreating blade 

stall is partially responsible for the speed limit of helicopters in forward flight. Eliminating 

retreating blade stall also eliminates one more factor in the limit in forward velocity. 

Finally, an assessment of the lift capability of the aircraft of the X2 configuration was made in 

sea level conditions as well as at 10,000ft, 95 degree Fahrenheit air density. 

The conclusion of this study is that the X2 design provides the capability of allowing flight 

velocities that are much higher than traditional helicopter designs as well as providing a higher 

degree of safety with the elimination of retreating blade stall. 

 

 
10.1 Future Work 

Many assumptions and simplifications of this analysis were made. E.g. tip vortices, wake 

disturbances, and compressibility effects were neglected. To increase the fidelity of the study, 

future work on this subject will take into account these aerodynamic factors. Since retreating 

blade stall is no longer a contributing factor to the velocity limitations of helicopters in this 

configuration, Mach effects and drag are suspected to play a prominent role in the forward speed 

limit. Future work on this design will include an in depth analysis of the Mach effects and drag. 

Another limitation to this study was the assumption that the blades behaved rigidly and either 

hinged or bent at the root of the blade. It intuitively follows that a flexible blade that is attached 

rigidly without a hinge will flap due to its own bending. The further from the root, the greater the 

bending angle. While this study assumed a constant flapping angle for the whole blade, in reality, 

this angle will change with the span of the blade. Future work will take into account the 

modeling of the blade bending. 
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Appendix A - Blade Element Theory Matlab Program 

%Blade  Element  Theory  -  Aaron  Ford 

 
clear, clc 

%Hover  Conditions 

%% 

%Rotational  Velocity 

Vt=204.826;  %tip  Velocity  m/sec 

R=3.835; %Radius  of  Blade  m 

Omega=Vt/R; %Rotational  Velocity  1/sec 

b=2; %Number  of  Blades 

rho=1.225; 

ar=0.1; %Cla,  coefficent  of  lift  slope 

cr=0.18288; %chord  of  rotor  blade 

cd=0.1; %coeff.  of  drag 

Ab  =  pi*R^2; 

arbar=ar/R; 

crbar=cr/R; 

%rbar=r/R; 

%AOA at radius r - alpha(r) 

%{ 

tr  =  Pitch  anfle  of  the  Blade 

vc  =  Climb  Velocity 

vr  =  Velocity  at  Radius  r 

%} 

theta=5; 

%tr=tr*pi/180; 

Vc=0; 

i=200; 

R=10; 

vr=zeros(1,i); 

%r=zeroes(1,  i+1); 

%% 

%Induced  Velocity  eqn  3.15 

radius=R/i:R/i:R; 

for  r=1:length(radius) 

 
vr(r)=Vt*... 

(-1*... 

(((ar*b*cr)/(16*pi*R))+... 
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end 

(Vc/(2*Vt)))+... 

sqrt((((ar*b*cr)/(16*pi*R))+(Vc/(2*Vt)))^2+... 

((ar*b*cr*radius(r)*theta)/(8*pi*R))-... 

((ar*b*cr*Vc)/(8*pi*R*Vt)))); 

 

%Radius  of  blade  span 

figure, 

plot(radius, vr); 

xlabel('Blade  Length  (m)'); 

ylabel('Induced  Velocity  (m/s)'); 

title('Induced  Velocity  Along  Span  of  Blade'); 

%Vr_bar 

 
x=0; 

j=200; 

%k=10000; 

R=10; 

r=1/j:1/j:1; 

rbar=r/R; 

 

 
%i=10; 

%vr=zeros(1,i); 

 
%Angle  of  Attack  Along  Blade  Span  -  Eqn  3.1a(assumes  vc  and  vr 

are  small) 

alpha=zeros(1,i); 

for  r=1:length(vr) 

%vr(rbar)=Omega*r; 

 
alpha(r)=theta-(Vc+vr(r))/(Omega*radius(r)); 

%alpha(r)=(theta-atan((Vc+vr(r))/(Omega*r))*(180/pi)); 

end 

 
figure, 

subplot(3,1,1) 

plot(radius, alpha); 

title('AOA  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('AOA  (Degrees)'); 
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%Lift  along  blade  span  -  Eqn  3.3 

L=zeros(1,i); 

for  r=1:length(vr) 

L(r)=0.5*ar*rho*(theta- 

((Vc+vr(r))/(Omega*radius(r))))*cr*(Omega*radius(r))^2; 

end 

 
subplot(3,1,2) 

plot(radius,  L); 

title('Lift  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('Lift  (N)'); 

 
%Profile  Drag  -  Eqn  3.4 

D=zeros(1,i); 

for  r=1:length(radius) 

D(r)=0.5*cd*rho*cr*(Omega*radius(r))^2; 

end 

 
subplot(3,1,3) 

plot(radius,  D); 

title('Drag  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('Drag  (N)'); 

%sgtitle('AOA,  Lift,  Drag') 

 
%Elementary  Torque  -  Eqn  3.7 

Q=zeros(1,i); 

phi_r=zeros(1,i); 

for  r=1:length(radius) 

phi_r(r)=atan((Vc+vr(r))/(Omega*radius(r))); 

Q(r)=(L(r)*sin(phi_r(r))+D(r)*cos(phi_r(r)))*radius(r); 

end 

 
figure, 

subplot(3,1,1) 

plot(radius,  Q); 

title('Torque  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('Torque  (Nm)'); 
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%  Thrust  -  Eqn  3.8 

T=zeros(360,i); 

for  o=1:360 

for  r=1:length(radius) 

T(o,r)=L(r)-D(r)*((Vc+vr(r))/(Omega*radius(r))); 

end 

end 

 
%  figure('color',  'white') 

%  cl  =  round(min(T(:))-1):0.4:round(max(T(:))+1); 

%  polarplot3d(T,'plottype','contour','polargrid',{6 

4},'contourlines',cl,  'radialrange',R); 

%  set(gca,'dataaspectratio',[1  1  1],'view',[90  90]); 

% colorbar 

 
subplot(3,1,2) 

plot(radius,  T); 

title('Thrust  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('Thrust  (N)'); 

 
%  Power  -  Eqn  3.10 

P=zeros(1,i); 

for  r=1:length(radius) 

P(r)=Q(r)*Omega; 

end 

 
subplot(3,1,3) 

plot(radius,  P); 

title('Power  Required  Along  Blade  Span'); 

xlabel('Span  (m)') 

ylabel('Power  (W)'); 

 

 

 

Appendix B - Hinged Flapping Matlab Program 

%%  Hinged  Flapping  functions 
%%  Current  Project  File 

%  Aaron  Ford 
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%  AE295  Project 
 

%  Clean  House 

clear, clc, close all 
 

%  Number  of  Revolutions 
num_rev  =  1; 

rev  =  num_rev*2*pi(); 
 

%  System  Variables  and  Flight  Conditions 
alphaS  =  4; 

R  = 8.18; 
c  =  0.5273;  %  meters 

CL = 1.2; 

CD = 0; 

Vinf  =  78; %  m/s,  Cruise  Speed 
%Vinf  =  99; %  m/s,  Max  Speed 
%Vinf  =  128.6;  %  Max  speed  for  SB>1 
rho = 1.225; 

Ib  = 20726; 

%Ib  =  85.5; 
Cla  =  0.1*(180/pi); 
r  =  0.75*R; 
OMEGA=27; 

delta_r = 0.02; 
 

%  Inertia  Calculations 

m = 113.6; % kg, mass of blade 

Ibf  =  m*delta_r*r^2;  %  MOI  for  blade  Element 
 

%  Control  Input 
theta0  =  8; %  Collective 
theta1c  =  0; %  Cyclic  Roll 
theta1s  =  -4; %  Cyclic  Pitch 

 

theta0  =  theta0*(pi/180); %  Collective 
theta1c  =  theta1c*(pi/180); %  Cyclic  Roll 
theta1s  =  theta1s*(pi/180); %  Cyclic  Pitch 

 

%%  ODE  45  Calculation  and  Plots 
 

%  Initial  Conditions  to  get  ODE  started. 

B0 = [0, 0]; 
 

%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 
out 

% evaluation. 
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for k = 1:20 
[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde451(psiOde, 

BOde,  Vinf,  theta0,theta1c,theta1s,  Ib,  alphaS),[0,  rev],  B0); 
 

%plot(psiOde,BOde(:,1)) 
%hold  on 

%pause 
B0  =  [BOde(end,1),BOde(end,2)]; 
end 

BOde  =  BOde*(180/pi); 
%  Plot  for  Fourier  vs  ODE  45 

%figure, 
subplot(2,2,1) 

% plot(psif,Bf) 
hold on 

plot(psiOde,BOde(:,1)) 
% hold on 

% plot(360,0,  '*') 
 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

ylabel('Beta') 
%title('(a)  Hinged  Blade  Flapping') 

title('Hinged  Blade  Flapping') 
legend('ODE45') 

grid on 
 

%%  Calculate  Phi  and  AOA 

 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 
gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 
 

%  Preallocate  for  speed 
Ut  =  zeros(length(psiOde),1); 
Up  =  zeros(length(psiOde),1); 
phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 

AOA  =  zeros(length(psiOde),1); 

 
 

for  j  =  1:length(psiOde) 
 

%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j))); 
Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j))); 
phi(j)  =  (Up(j)./Ut(j)); 
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%phi  =  phi*(180/pi); 

%  Calculate  AOA 
 

theta(j)  =  theta0  +  theta1c*cos(psiOde(j))  + 
theta1s*sin(psiOde(j)); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 
 

end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 
 

%figure, 

subplot(2,2,2) 
plot(psiOde,  phi) 

title('(b)  Induced  Inflow  Angle  of  Attack') 
%xlabel('Psi') 
xticks([0 pi 2*pi]) 
xticklabels({'0','\pi','2\pi'}) 
ylabel('Phi') 

legend('Phi') 
grid on 

 

%figure, 

subplot(2,2,3) 

plot(psiOde,  AOA) 

%title('(c)  Total  Effective  Angle  of  Attack') 
title('Hinged  Total  Effective  Angle  of  Attack') 

xticks([0 pi 2*pi]) 
xticklabels({'0','\pi','2\pi'}) 

ylabel('AOA') 
legend('AOA') 
grid on 

 

%  Plot  Beta  vs  AOA 
%figure, 
subplot(2,2,4) 

plot(psiOde,BOde(:,1)) 
hold on 
plot(psiOde,  AOA) 
title('(d)  Flapping  Angle  vs  AOA') 
xticks([0 pi 2*pi]) 
xticklabels({'0','\pi','2\pi'}) 
ylabel('Angle  in  Degrees') 
legend('Beta','AOA') 

grid on 



89  

%  Benchmark  Figures 

figure, 

subplot(2,1,1) 
hold on 

plot(psiOde,BOde(:,1)) 
xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 
ylabel('Beta') 

 

title('Hinged  Blade  Flapping') 
legend('ODE45') 

grid on 
 

subplot(2,1,2) 
plot(psiOde,  AOA) 
%title('(c)  Total  Effective  Angle  of  Attack') 

title('Hinged  Total  Effective  Angle  of  Attack') 
xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 
ylabel('AOA') 
legend('AOA') 
grid on 

 

HBenchB  =  [psiOde  BOde(:,1)]; 

HBenchA  =  [psiOde  AOA]; 
 

save('HBenchB.mat','HBenchB'); 

save('HBenchA.mat','HBenchA'); 

%%  Functions 
function  dum  =  flapOde451(psi,  B,  Vinf,  theta0,theta1c,theta1s, 
Ib,  alphaS) 

 

alphaS  =  alphaS*(pi/180); 
c = 0.5273; 

Cla  =  0.1*(180/pi); 
rho = 1.225; 

R = 8.18; 

OMEGA = 27; 
delta_r = 0.02; 
mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 
gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 
r = 0.75; 

Ut  =  (r  +  mu*sin(psi)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi)); 
 

theta = theta0 + theta1c*cos(psi) + theta1s*sin(psi); 
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%Cla  =  0.1; 

L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*r; 

 

 

 

 

 
End 

%dim  =  R/(OMEGA^2); 
%dim  =  1; 
%Bddot  =  -((cos(B(1)))*sin(B(1)))  +  (Mf/Ib)*dim*delta_r; 
Bddot  =  -(B(1))  +  Mf; 

dum  =  [B(2),  Bddot]; 
dum  =  dum(:); 

 

Appendix C - Hingeless Blade Flapping MatLab Program 

%%  Hingeless  Flapping  ODE 

%%  Current  Project  File 

%  Aaron  Ford 

%  AE295  Project 

 
%  Clean  House 

clear, clc, close all 

 
%  Number  of  Revolutions 

num_rev  =  1; 

%  Percent  of  Blade  cutout 

pct = 0.5; 

%  Number  of  steps 

nSteps  =  30; 

%  Critical  Angle  of  Attack 

AlphaCrit  =  0; 

%  Forward  Flight  Velocity 

Vinf  =  78; %  m/s,  Cruise  Speed 

%Vinf  =  99; %  m/s,  Max  Speed 

%Vinf  =  128.6; 

 
%  Control  Input 

theta0  =  10; %  Collective 

theta1c  =  0; %  Cyclic  Roll 

theta1s  =  0; %  Cyclic  Pitch 

 
%  System  Variables  and  Flight  Conditions 
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rev  =  num_rev*2*pi(); 

alphaS  =  0; 

R = 8.18; 

c  =  0.5273;  %  meters 

 
rho = 1.225; 

Ib = 20726; 

Cla  =  0.1; 

%r  =  0.75*R; 

r = 0.75; 

OMEGA=27; 

delta_r = 0.02; 

 

 

 
% Deg2Rad 

theta0  =  theta0*(pi/180); %  Collective 

theta1c  =  theta1c*(pi/180); %  Cyclic  Roll 

theta1s  =  theta1s*(pi/180); %  Cyclic  Pitch 

%thetaTW  =  thetaTW*(pi/180); %  Blade  Twist 

Cla  =  Cla*(180/pi); 

 

 
mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

 
%%  ODE  45  Calculation  and  Plots 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0.727459607119437,-1.57925956832798]; 

 
%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

 
for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde451(psiOde, 

BOde,  Vinf,  theta0,theta1c,theta1s,  Ib,  r,  alphaS),[0,  rev], 

B0); 
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B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 

%  Plot  for  Fourier  vs  ODE  45 

subplot(2,2,1) 

hold on 

plot(psiOde,BOde(:,1)) 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

ylabel('Beta') 

title('ODE  45  of  Hingless  Rotor  System') 

legend('ODE45') 

grid on 

 

 
%%  Calculate  Phi  and  AOA 

 
%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 

AOA  =  zeros(length(psiOde),1); 

 

 
for  j  =  1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j))); 

Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j))); 

phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j))  + 

theta1s*sin(psiOde(j)); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 
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end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 

 
%figure, 

subplot(2,2,2) 

plot(psiOde,  phi) 

title('Induced  Inflow  Angle  of  Attack') 

%xlabel('Psi') 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

ylabel('Phi') 

legend('Phi') 

grid on 

 
%figure, 

subplot(2,2,3) 

plot(psiOde,  AOA) 

title('Total  Effective  Angle  of  Attack') 

xticks([0 pi/2 pi 3*pi/2 2*pi]) 

xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'}) 

ylabel('AOA') 

legend('AOA') 

grid on 

 
%  Plot  Beta  vs  AOA 

%figure, 

subplot(2,2,4) 

plot(psiOde,BOde(:,1)) 

hold on 

plot(psiOde,  AOA) 

title('Flapping  Angle  vs  AOA') 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

ylabel('Angle  in  Degrees') 

legend('Beta','AOA') 

grid on 

 

 
%%  Functions 
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function  dum  =  flapOde451(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib,  r,  alphaS) 

 
%alphaS  =  15; 

alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 

rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 

%  Arbetrarily  Chosen  Flapping  Freq 

%v = 1.2; 

 
Ut  =  (r  +  mu*sin(psi)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi)); 

 
theta = theta0 + theta1c*cos(psi) + theta1s*sin(psi); 

L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

 
Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 

dum  =  dum(:); 

end 
 

 

Appendix D - Hingeless AOA Distribution Matlab Program 

%%  Fourier  and  ODE  45  the  Flapping  functions 

%%  Current  Project  File 

%  Aaron  Ford 



95  

%  AE295  Project 

%  Clean  House 

clear, clc, close all 

 
%  Number  of  Revolutions 

num_rev  =  1; 

%  Percent  of  Blade  cutout 

pct = 0.5; 

%  Number  of  steps 

nSteps  =  30; 

%  Critical  Angle  of  Attack 

AlphaCrit  =  15; 

%  Forward  Flight  Velocity 

Vinf  =  78; %  m/s,  Cruise  Speed 

%Vinf  =  99; %  m/s,  Max  Speed 

%Vinf  =  155; 

 
%  System  Variables  and  Flight  Conditions 

rev  =  num_rev*2*pi(); 

alphaS  =  0; 

R = 8.18; 

c  =  0.5273;  %  meters 

 
rho = 1.225; 

Ib = 20726; 

Cla  =  0.1; 

r  =  0.75;%*R; 

OMEGA=27; 

delta_r = 0.02; 

 

 
mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

%  Control  Input 

theta0  =  8; %  Collective 

theta1c  =  0; %  Cyclic  Roll 

theta1s  =  0; %  Cyclic  Pitch 

 

 
% Deg2Rad 
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theta0  =  theta0*(pi/180); %  Collective 

theta1c  =  theta1c*(pi/180); %  Cyclic  Roll 

theta1s  =  theta1s*(pi/180); %  Cyclic  Pitch 

 
Cla  =  Cla*(180/pi); 

 

 
%%  ODE  45  Calculation  and  Plots 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0, 0]; 

% opts  = odeset('RelTol',1e-12,'AbsTol',1e- 

12,'InitialStep',1e-4,... 

%  'MaxStep',1e-3,'Refine',5,'Events',@eventX0); 

opts  = odeset('MaxStep',1e-1); 

 
%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde451(psiOde, 

BOde,  Vinf,  theta0,theta1c,theta1s,  Ib,r),[0,  rev],  B0,  opts); 

 
%plot(psiOde,BOde(:,1)) 

%hold  on 

%pause 

B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 

%  Plot  for  Fourier  vs  ODE  45 

%figure, 

 

 
%%  Calculate  Phi  and  AOA 

 
%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

U  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 
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AOA  =  zeros(length(psiOde),1); 

 
rBar  =  [0.2  0.3  0.4  0.5  0.6  0.75  0.8  0.9]; 

 
k  =  nSteps*(pct); 

figure, 

for  n  =  k:nSteps 

 
r  =  n/nSteps; 

for  j  =1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j))); 

Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j))); 

U(j)  =  sqrt(Ut(j)^2  +  Up(j)^2); 

phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j))  + 

theta1s*sin(psiOde(j)); 

theta = theta*(180/pi); 

AOA(j,n)  =  theta(j)  -  phi(j); 

 
end 

 
%  Plot  Phi  and  AOA  vs  Psi 

 

 

 

 

 

 

 

 

 

end 

%figure, 

plot(psiOde,  AOA) 

title('Total  Effective  Angle  of  Attack  Along  Span') 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

ylabel('AOA') 

grid on 

hold on 

 

%%  Functions 

function  dum  =  flapOde451(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib, r) 
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alphaS  =  0; 

alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 

rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 

 
Ut  =  (r  +  mu*sin(psi)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi)); 

 
theta = theta0 + theta1c*cos(psi) + theta1s*sin(psi); 

L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

 
Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 

dum  =  dum(:); 

end 
 

 

 

Appendix E - Hingeless Lift Distribution Matlab Program 

 
%%  Hingeless  Lift  Distribution 

%%  Current  Project  File 

%  Aaron  Ford 

%  AE295  Project 



99  

%  Clean  House 

clear, clc, close all 

 
%  Number  of  Revolutions 

num_rev  =  1; 

%  Percent  of  Blade  cutout 

pct = 0.6; 

%  Number  of  steps 

nSteps  =  30; 

%  Critical  Angle  of  Attack 

AlphaCrit  =  0; 

%  Forward  Flight  Velocity 

%Vinf  =  78; %  m/s,  Cruise  Speed 

%Vinf  =  99; %  m/s,  Max  Speed 

Vinf  =  126; 

 
%  Control  Input 

theta0  =  8; %  Collective 

theta1c  =  13; %  Cyclic  Roll 

theta1s  =  11; %  Cyclic  Pitch 

 
%  System  Variables  and  Flight  Conditions 

rev  =  num_rev*2*pi(); 

alphaS  =  0; 

R = 8.18; 

c  =  0.5273;  %  meters 

 
rho = 1.225; 

%Density  at  10,000'  and  95f 

%rho  =  0.9053; 

Ib = 20726; 

Cla  =  0.1; 

%r  =  0.75*R; 

r = 0.75; 

OMEGA=27; 

delta_r  =  R/nSteps; 

 

 

 
% Deg2Rad 

theta0  =  theta0*(pi/180); %  Collective 
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theta1c  =  theta1c*(pi/180); %  Cyclic  Roll 

theta1s  =  theta1s*(pi/180); %  Cyclic  Pitch 

%thetaTW  =  thetaTW*(pi/180); %  Blade  Twist 

Cla  =  Cla*(180/pi); 

 

 
mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

 

 

 
opts  =  odeset('RelTol',  1e-3,  'AbsTol',  1e- 

3,'InitialStep',1e-2,'MaxStep',1e-2,'Refine',5); 

 
kk  =  round(nSteps*(pct)); 

row  =  nSteps  -  kk; 

Lift  =  zeros(3146,row); 

figure, 

for  n  =  kk:nSteps 

r  =  n/nSteps; 

%%  Blade  1 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0,0]; 

 
%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

 
for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde451(psiOde, 

BOde,Vinf,  theta0,theta1c,theta1s,  Ib,  r,  alphaS),[0,  rev], 

B0,opts); 

 
B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 
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%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 

AOA  =  zeros(length(psiOde),1); 

 

 
for  j  =  1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j))); 

Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j))); 

phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j))  + 

theta1s*sin(psiOde(j)); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 

 
end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 

 
V = zeros(j,1); 

L1 = zeros(j,1); 

 
for mm = 1:j 

 
V(mm)  =  OMEGA*r  +  Vinf*sin(psiOde(mm)); 

L1(mm)  =  0.5*rho*V(mm)^2*c*Cla*AOA(mm)*(pi/180)*delta_r; 

%L(mm)  =  0.5*((Ut(mm)^2)*(pi/180)*theta(mm)  - 

((Up(mm))).*(Ut(mm))); 

 

 
end 

%% 
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%figure, 

plot(psiOde,L1) 

hold on 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

xlabel('Psi') 

ylabel('Lift') 

grid on 

 

 

 
%%  Blade  2 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0,0]; 

 
%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

 
for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde452(psiOde, 

BOde,Vinf,  theta0,theta1c,theta1s,  Ib,  r,  alphaS),[0,  rev], 

B0,opts); 

 
B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 

 
%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 

AOA  =  zeros(length(psiOde),1); 

 

 
for  j  =  1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j)  +  pi/2)); 
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Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j)  + 

pi/2)); 

phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j)  +  pi/2)  + 

theta1s*sin(psiOde(j)  +  pi/2); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 

 
end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 

 
V = zeros(j,1); 

L2 = zeros(j,1); 

 
for mm = 1:j 

 
V(mm)  =  OMEGA*r  +  Vinf*sin(psiOde(mm)  +  pi/2); 

L2(mm)  =  0.5*rho*V(mm)^2*c*Cla*AOA(mm)*(pi/180)*delta_r; 

%L(mm)  =  0.5*((Ut(mm)^2)*(pi/180)*theta(mm)  - 

((Up(mm))).*(Ut(mm))); 

 

 
end 

%% 

 

 

 
plot(psiOde,L2) 

hold on 

 

 

 
%%  Blade  3 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0,0]; 
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%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

 
for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde453(psiOde, 

BOde,Vinf,  theta0,theta1c,theta1s,  Ib,  r,  alphaS),[0,  rev], 

B0,opts); 

 
B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 

 
%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 

AOA  =  zeros(length(psiOde),1); 

 

 
for  j  =  1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j)  +  pi)); 

Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j)  + 

pi));  
phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j)  +  pi)  + 

theta1s*sin(psiOde(j)  +  pi); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 

 
end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 

V = zeros(j,1); 
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L3 = zeros(j,1); 

for mm = 1:j 

V(mm)  =  OMEGA*r  +  Vinf*sin(psiOde(mm)  +  pi); 

L3(mm)  =  0.5*rho*V(mm)^2*c*Cla*AOA(mm)*(pi/180)*delta_r; 

%L(mm)  =  0.5*((Ut(mm)^2)*(pi/180)*theta(mm)  - 

((Up(mm))).*(Ut(mm))); 

 

 
end 

 

%% 

plot(psiOde,L3) 

hold on 

 

 

 

 

%%  Blade  4 

 
%  Initial  Conditions  to  get  ODE  started. 

B0 = [0,0]; 

 
%  For  loop  iterates  to  re-insert  initial  conditions  to  smooth 

out 

% evaluation. 

 
for k = 1:20 

[psiOde,  BOde]  =  ode45(@(psiOde,  BOde)flapOde454(psiOde, 

BOde,Vinf,  theta0,theta1c,theta1s,  Ib,  r,  alphaS),[0,  rev], 

B0,opts); 

 
B0  =  [BOde(end,1),BOde(end,2)]; 

end 

BOde  =  BOde*(180/pi); 

 
%  Preallocate  for  speed 

Ut  =  zeros(length(psiOde),1); 

Up  =  zeros(length(psiOde),1); 

phi  =  zeros(length(psiOde),1); 

theta  =  zeros(length(psiOde),1); 
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AOA  =  zeros(length(psiOde),1); 

 

 
for  j  =  1:length(psiOde) 

 
%  Calculate  Phi 

Ut(j)  =  (r  +  mu*sin(psiOde(j)  +  (3*pi/2))); 

Up(j)  =  (lambda  +  r*BOde(j,2)+BOde(j,1)*mu*cos(psiOde(j)  + 

(3*pi/2))); 

phi(j)  =  (Up(j)./Ut(j)); 

%phi  =  phi*(180/pi); 

%  Calculate  AOA 

 
theta(j)  =  theta0  +  theta1c*cos(psiOde(j)  +  (3*pi/2))  + 

theta1s*sin(psiOde(j)  +  (3*pi/2)); 

theta = theta*(180/pi); 

AOA(j)  =  theta(j)  -  phi(j); 

 
end 

U  =  [Up  Ut]; 

%  Plot  Phi  and  AOA  vs  Psi 

 
V = zeros(j,1); 

L4 = zeros(j,1); 

 
for mm = 1:j 

 
V(mm)  =  OMEGA*r  +  Vinf*sin(psiOde(mm)  +  (3*pi/2)); 

L4(mm)  =  0.5*rho*V(mm)^2*c*Cla*AOA(mm)*(pi/180)*delta_r; 

%L(mm)  =  0.5*((Ut(mm)^2)*(pi/180)*theta(mm)  - 

((Up(mm))).*(Ut(mm))); 

 

 
end 

 

%% 

plot(psiOde,L4) 

hold on 



107  

L  =  [L1,L2,L3,L4]; 

 
%Lift  =  zeros(3146,row); 

for nn = 1:j 

Lift(nn,n)  =  sum(L(nn,:)); 

end 

%plot(psiOde,  Lift) 

hold on 

%legend('Blade  1','Blade  2','Blade  3','Blade  4','Total  Lift') 

 

 
L5  =  flip(L1); 

L6  =  flip(L2); 

L7  =  flip(L3); 

L8  =  flip(L4); 

 
LL  =  [L5,L6,L7,L8]; 

Lift2  =  zeros(j,1); 

for nn = 1:j 

Lift2(nn)  =  sum(LL(nn,:)); 

end 

Lift1and2  =  Lift+Lift2; 

 
plot(psiOde,L5) 

hold on 

plot(psiOde,L6) 

hold on 

plot(psiOde,L7) 

hold on 

plot(psiOde,L8) 

hold on 

%plot(psiOde,  Lift2) 

hold on 

plot(psiOde,  Lift1and2) 

 

 
end 

 

 

 
Lift_Total_psi  =  zeros(j,1); 
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for nnn = 1:j 

Lift_Total_psi(nnn)  =  sum(Lift1and2(nnn,:)); 

end  
plot(psiOde,Lift_Total_psi) 

xticks([0 pi 2*pi]) 

xticklabels({'0','\pi','2\pi'}) 

xlabel('Psi') 

ylabel('Lift  (N)') 

title('Total  Lift  About  Rotation') 

grid on 

 

 

%%  Functions 

function  dum  =  flapOde451(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib,  r,  alphaS) 

 
alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 

rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 

 
Ut  =  (r  +  mu*sin(psi)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi)); 

 
theta = theta0 + theta1c*cos(psi) + theta1s*sin(psi); 

L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

 
Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 
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dum  =  dum(:); 

end 

function  dum  =  flapOde452(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib,  r,  alphaS) 

 
alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 

rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 

 
Ut  =  (r  +  mu*sin(psi  +  pi/2)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi  +  pi/2)); 

 
theta = theta0 + theta1c*cos(psi + pi/2) + theta1s*sin(psi 

+ pi/2); 

 
L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 

dum  =  dum(:); 

end 

function  dum  =  flapOde453(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib,  r,  alphaS) 

 
alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 
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rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 

 
Ut  =  (r  +  mu*sin(psi  +  pi)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi  +  pi)); 
 

theta = theta0 + theta1c*cos(psi + pi) + theta1s*sin(psi + 

pi); 
 

L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 

dum  =  dum(:); 

end 

function  dum  =  flapOde454(psi,  B,  Vinf,  theta0,theta1c,theta1s, 

Ib,  r,  alphaS) 

 
alphaS  =  alphaS*(pi/180); 

c = 0.5273; 

Cla  =  0.1*(180/pi); 

rho = 1.225; 

R = 8.18; 

OMEGA = 27; 

mu  =  (Vinf*cos(alphaS))/(OMEGA*R); 

gamma  =  (rho*Cla*c*R^4)/Ib; 

lambda  =  (Vinf*sin(alphaS)  +  gamma)/(OMEGA*R); 

e  = 0.10; 

nu = (r-e)/(1-e); 

v = 1.15; 
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Ut  =  (r  +  mu*sin(psi  +  3*pi/2)); 

Up  =  (lambda  +  r*B(2)+B(1)*mu*cos(psi  +  3*pi/2)); 

 
theta = theta0 + theta1c*cos(psi + 3*pi/2) + 

theta1s*sin(psi + 3*pi/2); 

 
L  =  0.5*((Ut^2)*theta  -  ((Up)).*(Ut)); 

Mf  =  gamma*L*nu; 

Bddot  =  -(B(1))*v^2  +  Mf; 

dum  =  [B(2),  Bddot]; 

dum  =  dum(:); 

end 


