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ABSTRACT 

 

SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS   

MODEL 

 

by Romalyn Mirador  

 

This project details the process of building, testing, and comparing a tool to simulate 

spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and 

methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a 

code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting 

trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model 

can be used to find complex trajectories but would need to include other perturbations like 

gravity harmonics to model more accurate trajectories.  
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1.0 INTRODUCTION 

1.1 Project Objective 

Finding accurate spacecraft trajectory, especially in regimes where multiple bodies are 

acting on the spacecraft, is not a trivial task. The Two-Body Problem (2BP) is used to model 

spacecraft trajectories in the close vicinity of a heavenly body. However, the 2BP does not take 

gravitational effects from other large bodies or other perturbations like solar radiation pressure, 

into account. When more bodies are added, the model becomes more complex, albeit accurate.  

This project develops a higher-fidelity model - an ephemeris N-Body model. Using the 

Ephemeris positions of the Earth, Moon and Sun, the goal of this investigation is to build and test 

a code of a higher-fidelity numerical model for trajectory design. The tool is tested and compared 

to NASA’s General Mission Analysis Tool (GMAT) for accuracy.  

 

1.2 Literature Review 

Since the 1600s, Johannes Kepler’s research into planetary motion combined with 

Newton’s Laws have shaped the ideas of orbital mechanics and spaceflight [1]. Kepler and 

Newton’s laws are the basis of spacecraft trajectory models that have been extensively studied 

and researched today.  

 

1.2.1 Different Models 

The most used model is the 2BP as it has a complete analytical solution. Practically, orbital 

mechanics problems can be solved by using the 2BP model as a starting point to calculate 

approximate parameters and trajectories [2]. For example, an article presented by Hsiao et al. [3] 
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investigates spacecraft trajectories with a photonic laser propulsion system. The authors use the 

2BP to help design the spacecraft mission.  

 Derivation for the two-body problem can found in Bate et al. [1, pp.11-14] using the 

assumptions: 

• The two bodies are spherically symmetric 

• No other external or internal forces are acting on the system 

The equation of motion for the 2BP is presented in equation 1.1 where �̈� is the acceleration 

vector, 𝑟 is the position vector, 𝑟 is the magnitude of the position, and 𝜇 is the gravitational 

parameter (𝜇 = 𝐺𝑀).  

�̈� +
𝜇

𝑟3
𝑟 = 0 (1.1) 

Adding one more body into the system, the resulting three-body problem arises. A known 

three-body model is called the Circular Restricted Three Body Problem (CRTBP). A 

comprehensive text on and full derivation of the CRTBP can be found in The Theory of Orbits 

by Victor Szebehely [4]. From the text, the following simplifying assumptions are used for 

derivation of the CRTBP:  

• Two of the bodies revolve in a circular orbit about their common center of mass 

(barycenter) 

• The two revolving bodies are considered point masses  

• The third body has a mass much smaller than the other two bodies that it does not affect 

the motion of the larger bodies 

The CRTBP is one of the models that is seen commonly used for trajectory design in multi-

body dynamical regimes. An example of CRTBP’s use in recent studies comes from Pavlak’s 
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dissertation [5]. A set of nondimensional, scalar, second order ODE equations of motion of a 

body of interest (the spacecraft) was derived and presented here in equations 1.2 to 1.4. [5] 

�̈� − 2�̇� − 𝑥 = −
(1 − 𝜇)(𝑥 + 𝜇)

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇(𝑥 − 1 + 𝜇)

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.2) 

�̈� + 2�̇� − 𝑦 = −
(1 − 𝜇)𝑦

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇𝑦

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.3) 

�̈� = −
(1 − 𝜇)𝑧

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇𝑧

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.4) 

 In these equations, 𝜇 represents the nondimensional mass parameter of the mass of a 

second body, 𝑚2, divided by the characteristic mass, 𝑚∗. Pavlak uses these derived equations of 

motion to better prepare for its numerical integration and to easily compare solutions of different 

three body systems. [5] 

Other examples of CRTBP use includes:  

• A thesis by Brick [6] that explores high altitude satellite trajectories to remotely sense 

the surface of the Earth for military applications (such as surveillance and global 

communications) 

• An article by Tantardini et al. [7] discussing possible missions to the third libration 

point, L3, to insert a space observatory satellite 

Other variations of equations of motion for the general three body problem have also been 

derived. For example, in an article presented by Bombardelli and Bernal Mencia [8], the CRTBP 

equations of motion are derived in cylindrical curvilinear coordinates instead of Cartesian 

coordinates. With the new derivation, a new analytical tool and an expansion to the averaged 

third body disturbing function were found to aid in their study of co-orbital motion. [8] 
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When deriving the equations of motion for multiple bodies without using simplifying 

assumptions (as in the case for the 2BP or CRTBP), the resulting derivation gives the higher-

fidelity N-body model. The N-Body model can consider all gravitational and other external 

forces (such as drag and solar radiation pressure) acting on the body of study. A derivation of the 

N-body model is seen in Section 2.1 of this paper based on the derivation from Roy [2] and 

Capdevila [9]. 

 

1.2.2 Numerical Methods 

Unlike the 2BP where a closed form solution can be found, models with more than 2 

bodies present challenges in obtaining a solution. From the reviewed research, the common 

concept to solve for multi-body trajectory problems is to approximate solutions using numerical 

methods. This could be done by building a code or by using applications that already have a 

library of numerical integration solvers.  

In a thesis presented by Wilmer [10], Wilmer uses MATLAB and its library of solvers to 

numerically integrate the CRTBP equations of motion found in his thesis. One of MATLAB’s 

ODE solvers (ODE45) is based on an explicit Runge-Kutta formula, the Dormand-Prince pair 

[11]. The Runge-Kutta formula is used to solve for a first order system of ODEs in the form of 

equation 1.5 and a known initial condition, 𝑦(𝑥0). 

𝑦′(𝑥) = 𝑓[𝑥, 𝑦(𝑥)] (1.5) 

 The explicit Runge -Kutta formula [12] is given by equation 1.6 to approximate the 

solution, 𝑦𝑛, at points, 𝑥𝑛, where 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛, ℎ𝑛 = 𝜃(ℎ𝑛)ℎ and 0 < 𝜃(𝑥𝑛) < 1. 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑛Φ(𝑦𝑛, ℎ𝑛) = 𝑦𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

 (1.6) 
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𝑘1 = ℎ𝑛𝑓(𝑦𝑛)  

𝑘𝑖 = ℎ𝑛𝑓 (𝑦𝑛 + ∑𝑎𝑖𝑗𝑘𝑗

𝑖−1

𝑗=1

)  

  

A similar numerical method also in the Runge-Kutta family is the Fixed-Step Runge-

Kutta (RK) function. A known and commonly used fixed-step RK method is the classic fourth 

order RK method (RK4) detailed by Cheever [13]. Similar to the explicit RK formula for 

ODE45, the RK4 method approximates a solution for a first order ODE in the form of equation 

1.7 and initial condition of  𝑦(𝑡0) = 𝑦0.  

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦′(𝑡) = 𝑓(𝑦(𝑡), 𝑡) (1.7) 

To find the estimation of the solution, 𝑦(𝑡), slope estimates are calculated first with a 

fixed step-size of h (shown in equations 1.8 to 1.11) and then summed in equation 1.12.  

𝑘1 = 𝑓(𝑦(𝑡0), 𝑡0) (1.8) 

𝑘2 = 𝑓(𝑦(𝑡0) + 𝑘1

ℎ

2
, 𝑡0 +

ℎ

2
) (1.9) 

𝑘3 = 𝑓(𝑦(𝑡0) + 𝑘2

ℎ

2
, 𝑡0 +

ℎ

2
) (1.10) 

𝑘4 = 𝑓(𝑦(𝑡0) + 𝑘3ℎ, 𝑡0 + ℎ) (1.11) 

𝑦(𝑡0 + ℎ) = 𝑦(𝑡0) +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
ℎ (1.12) 

Scott and Martini [14] tested another numerical integrator. The authors used a Taylor Series 

integration and NASA’s Spacecraft N-body Analysis Program (SNAP) to calculate spacecraft 

trajectories. By using the Taylor series, a solution is found quicker than using an eighth-order 

Runge-Kutta Fehlberg method. [14] 
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Other approaches to finding a spacecraft’s trajectory does not always use a numerical 

integrator. For example, a method described by Zhang et al. [15] is to use a periodic orbit 

computation. The article describes utilizing the symmetry of the CRTBP to derive a new kind of 

periodic orbit computation that does not require a starting analytic approximation or state 

transition matrix. Erwin and Bernstein [16] takes an approach to use incoming data to estimate a 

target satellite’s trajectory. Using an extended Kalman filter algorithm and range measurements 

from the other satellites in orbit, the authors’ found an estimation of the eccentricity and 

inclination of the target satellite’s orbit.  
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2.0 THE N-BODY MODEL 

2.1 Derivation of Equations of Motion 

The geometry of n number of bodies (depicted by P) of mass, m in a Newtonian (or non-

accelerating) frame is shown in Figure 2.1. Motions of the bodies in inertial space are relative to 

a non-accelerating point, O. Positions of the particles relative to the origin, O, are denoted by 𝑟𝑖⃗⃗⃗  

and 𝑟�⃗⃗⃗�. Positions of the particles relative to the particle of interest, 𝑃𝑖, are denoted by 𝑟𝑖𝑗⃗⃗ ⃗⃗ . 

 

Figure 2.1 N-Body Model Geometry in Inertial Frame 

The equation of motion for the N-Body system can be derived by using Newton’s Law of 

Universal Gravitation and Newton’s Law of Motion. Starting with Newton’s Law of Universal 

Gravitation, the sum of the forces exerted on the spacecraft, 𝑃𝑖, is shown in equation 2.1.  

𝑓𝑖⃗⃗⃗ = −𝐺 ∑
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗⃗⃗ ⃗⃗

𝑛

𝑗=1,𝑗≠𝑖

 (2.1) 
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Using Newton’s Law of Motion and substituting in equation 2.1 and the vector 

property, 𝑟𝑖𝑗⃗⃗ ⃗⃗ = −𝑟𝑗𝑖⃗⃗⃗⃗ , equation 2.2 is the resulting N-Body model.  

𝑚𝑖𝑟𝑖⃗⃗⃗
̈ = 𝑓𝑖⃗⃗⃗  

𝑟𝑖⃗⃗⃗
̈ = 𝐺 ∑

𝑚𝑗

𝑟𝑗𝑖
3 𝑟𝑗𝑖⃗⃗⃗⃗

𝑛

𝑗=1,𝑗≠𝑖

 (2.2) 

When evaluating the N-Body model, every body, 𝑃𝑗, that is introduced creates six more 

unknowns (x, y and z positions and velocities). To reduce the number of unknowns, find the 

motion of a particle, 𝑃𝑖, relative to the motion of another particle, 𝑃𝑞, as shown in Figure 2.2.  

 

Figure 2.2 Motion of Particle i relative to Particle q  

Equation 2.3 is found by using vector addition and taking the derivatives of equation 2.3 

gives the velocity vector (equation 2.4) and the acceleration vector (equation 2.5). 

𝑟𝑖𝑞⃗⃗⃗⃗⃗ = 𝑟𝑞⃗⃗⃗ ⃗ − 𝑟𝑖⃗⃗⃗  (2.3) 



9 

 

𝑟𝑖𝑞⃗⃗⃗⃗ ̇ = 𝑟𝑞⃗⃗⃗  ̇ − 𝑟𝑖⃗⃗ ̇  (2.4) 

𝑟𝑖𝑞⃗⃗⃗⃗ ̈ = 𝑟𝑞⃗⃗⃗  ̈ − 𝑟𝑖⃗⃗ ̈ (2.5) 

Finding the equations of motion for bodies 𝑃𝑖 and 𝑃𝑞, substituting into equation 2.5 and 

using vector properties yields equation 2.6, the final form of the N-Body model.  

𝑟𝑖⃗⃗⃗
̈ = 𝐺 ∑

𝑚𝑗

𝑟𝑗𝑖
3 𝑟𝑗𝑖⃗⃗⃗⃗

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

+ 𝐺
𝑚𝑞

𝑟𝑞𝑖
3 𝑟𝑞𝑖⃗⃗⃗⃗⃗  

𝑟𝑞⃗⃗⃗ ⃗̈ = 𝐺 ∑
𝑚𝑗

𝑟𝑗𝑞
3 𝑟𝑗𝑞⃗⃗⃗⃗⃗

𝑛

𝑗=1,≠𝑖,𝑗≠𝑞

+ 𝐺
𝑚𝑖

𝑟𝑖𝑞
3 𝑟𝑖𝑞⃗⃗⃗⃗⃗  

𝑟𝑖𝑞⃗⃗⃗⃗⃗̈ = 𝐺 ∑ 𝑚𝑗 (
𝑟𝑖𝑗⃗⃗ ⃗⃗

𝑟𝑖𝑗
3 −

𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

𝑟𝑞𝑗
3 )

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

− 𝐺(𝑚𝑞 + 𝑚𝑖)
𝑟𝑞𝑖⃗⃗⃗⃗⃗

𝑟𝑞𝑖
3  (2.6) 

Although the model is derived using an arbitrary inertial base point, it is easier to 

calculate the motion of the body of interest with respect to a central body. Figure 2.3 presents the 

N-Body model geometry where the central body, 𝑃𝑞, represents the Earth, the body of interest, 

𝑃𝑖, represents the spacecraft, and all other bodies, 𝑃𝑗, represent additional celestial bodies, 

specifically the Sun and Moon. The position of the spacecraft relative to the Earth is denoted by 

𝑟𝑖𝑞⃗⃗⃗⃗⃗. The position of the spacecraft relative to the Moon and Sun is denoted by 𝑟𝑖𝑗⃗⃗ ⃗⃗ . Positions of the 

Sun and Moon relative to the Earth are denoted by 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗. 
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Figure 2.3 N-Body Model Geometry relative to Central Body, 𝑃𝑞 

Further reducing the number of unknowns, 𝑟𝑖𝑗⃗⃗ ⃗⃗  is rewritten in terms of 𝑟𝑖𝑞⃗⃗⃗⃗⃗ and 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗ and the 

resulting N-Body model is shown in equation 2.7.  

𝑟𝑖𝑞⃗⃗⃗⃗⃗̈ = 𝐺 ∑ 𝑚𝑗 (
𝑟𝑖𝑞⃗⃗⃗⃗⃗ + 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

(𝑟𝑖𝑞 + 𝑟𝑞𝑗)
3 −

𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

𝑟𝑞𝑗
3 ) −

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

𝐺(𝑚𝑞 + 𝑚𝑖)
𝑟𝑞𝑖⃗⃗⃗⃗⃗

𝑟𝑞𝑖
3  (2.7) 

 

Equation 2.7 does not consider other external forces such as drag, thrust, or solar 

radiation pressure. For the scope of this project, only gravitation forces will be addressed for 

simplification. Equations 2.8 – 2.10 are the expanded Cartesian coordinate forms of the N-Body 

model. 
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�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 
 𝑥𝑖𝑞 + 𝑥𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2 )
3 −

𝑥𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2 )

3

)

 
 

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑥𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 )

3 

 

(2.8) 

�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 
 𝑦𝑖𝑞 + 𝑦𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2 )
3 −

𝑦𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2 )

3

)

 
 

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑦𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 )

3 

 

(2.9) 

�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 
 𝑧𝑖𝑞 + 𝑧𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2 )
3 −

𝑧𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2 )

3

)

 
 

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑧𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 )

3 

 

(2.10) 
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3.0 METHODOLOGY 

 Building and testing the code to model trajectories of a spacecraft will be done in 

MATLAB. Reading in the ephemerides of the Earth, Moon and Sun for computations is 

integrated into MATLAB using NASA JPL’s SPICE toolkit. The circular orbit and the LADEE 

mission trajectory are used as test cases for the numerical model. Finally, the results are 

compared to NASA’s GMAT program.  

 

3.1 MATLAB  

MATLAB was chosen as the main tool for programming as it already has built-in math 

functions and visualization tools, thus saving on time on programming in traditional languages 

(e.g. C/C++). One of the built-in math functions of importance are the solvers for ordinary 

differential equations (ODE) – particularly ODE45. Section 1.2 of this paper describes the 

numerical method used for ODE45.  

The ODE45 solver will be used to solve for the N-Body model. Additionally, a Fixed-Step 

Runge-Kutta (RK) function will be created to also evaluate the N-body model. Initial conditions 

are taken for a circular orbit and from the LADEE mission (section 3.3). Solutions will then be 

plotted to visualize and compare the subsequent spacecraft trajectories. 

3.2 SPICE and HORIZONS 

SPICE is an information system built by NASA JPL’s Navigation and Ancillary 

Information Facility (NAIF) and contains data such as planet ephemerides or a spacecraft’s 

orientation at a given time in space. Data from SPICE can be used to compute observation 
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geometry (e.g. positions and velocities of spacecraft) to help with space mission design. SPICE 

data can be accessed through files known as kernels which a user can call into their program or 

application. [17] 

HORIZONS, which is from NASA JPL’s Solar System Dynamics team, is another way 

to access ephemerides for celestial objects. Unlike SPICE, the ephemerides can be accessed 

through a web-based interface and can output text files. Users can easily obtain planetary 

positions for a few specific times. However, for larger time frames and computations, it is ideal 

to use SPICE toolkits for an more efficient integration into programs. [18] 

   For the purposes of this paper, the SPICE toolkit, MICE, will be integrated into 

MATLAB so that the ephemeris positions of the n-bodies can be called in to compute a 

spacecraft’s trajectory. Functions that will be used is listed in Appendix A.  

Kernels as well as time frames that will be used are associated with the LADEE mission 

(discussed in Section 3.3). Specifically, the kernels used are [19]: 

• naif0010.tls – kernel containing leap second data up to July 1, 2012. 

• de432s.bsp – kernel for Planetary Ephmerides DE432. 

• pck00010.tpc – kernel providing 2009 IAU constants. 

• ladee_r_13250_13279_pha_v01.bsp – LADEE trajectory kernel for all Earth 

phasing orbits and latter part of launch. [20] 

• ladee_r_13278_13325_loa_v01.bsp – LADEE trajectory kernel for lunar orbit 

acquisition. [21] 
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• ladee_r_13325_14108_sci_v01.bsp – LADEE trajectory kernel for science phase. 

[22] 

• ladee_r_14108_99001_imp_v01.bsp – LADEE trajectory kernel for end-of-

mission. [23] 

An inertial reference frame, centered at the Earth’s center, will be used. In SPICE, this 

frame is the J2000 frame, or the International Celestial Reference Frame (ICRF). SPICE 

considers the J2000 frame and the ICRF as the same frame because the difference between them 

is small. When SPICE data is referencing J2000 frame, it is referencing ICRF. The coordinate 

system lies on the Equatorial plane with the x-axis at the Earth Mean Equator, the y-axis at the 

Equinox of Reference epoch, and the z-axis normal to the mean equator of date at epoch.  

 

3.3 Benchmark Data 

To validate that the code is working as expected, a known solution for the 2BP will be 

simulated in both MATLAB and GMAT. The initial conditions given are for a geostationary 

circular orbit shown in Table 3.1.  

Table 3.1 Initial Conditions for a Circular Orbit 

Initial Condition Value 

Initial x position, 𝑥0 42,164 km 

Initial y position, 𝑦0 0 𝑘𝑚 

Initial z position, 𝑧0 0 𝑘𝑚 

Initial x velocity, �̇�0 0 𝑘𝑚/𝑠 

Initial y velocity, �̇�0 3.0747 𝑘𝑚/𝑠 

Initial z velocity, 𝑧0̇ 0 𝑘𝑚/𝑠 
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After validation of the code, the next test case used will be the Lunar Atmosphere and 

Dust Environment Explorer (LADEE) mission. The purpose of the LADEE mission was to 

observe the lunar atmosphere at low altitudes. On September 7, 2013 03:27 UTC, LADEE was 

launched on a Minotaur-V launch vehicle and afterwards entered a phasing loop trajectory. There 

are three phasing loop orbits around the Earth before reaching its final trajectory around the 

Moon. The amount of time for the phasing loops to be completed is shown in Table 3.2. [24] 

Table 3.2 Number of Days to Complete Phasing Loops [24] 

Phase Days 

Insertion orbit - Earth 6.4 

Second phasing loop - Earth 8.2 

Third phasing loop - Earth 9.9 

Transfer orbit – Earth to Moon 4.9 

 

SPICE data for the LADEE mission is used as benchmark data. The motivation to use the 

LADEE mission as benchmark data came from wanting to simulate a mission to the moon as 

well as the availability of trajectory data from SPICE. Although there are maneuvers performed 

during the phasing loops, the scope of this project will focus on the first Earth phasing loop 

before the first maneuver. A list of maneuvers performed during the three phasing loops and 

lunar orbit insertion are shown in Table 3.3.  

Table 3.3 LADEE Maneuvers [24] 
Maneuver Date / Time (UTC) 

Apogee Maneuver 1B 11 Sep 2013 23:00 

Perigee Maneuver 1 13 Sep 2013 16:36 

Perigee Maneuver 2 21 Sep 2013 11:53 

Trajectory Correction Maneuver 1 01 Oct 2013 22:00 

Lunar Orbit Insertion 1 06 Oct 2013 10:57 

Lunar Orbit Insertion 2 09 Oct 2013 8:16 

Lunar Orbit Insertion 3 13 Oct 2013 02:57 
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Initial conditions were also taken from the SPICE data of LADEE trajectory at 

September 7, 2013 04:00 TDB (shown in Table 3.4). The LADEE trajectory appears in Figure 

3.1. 

Table 3.4 Initial Conditions for LADEE Trajectory 

Initial Condition Value 

Initial x position, 𝑥0 1190 𝑘𝑚 

Initial y position, 𝑦0 8209.1 𝑘𝑚 

Initial z position, 𝑧0 −3341.6 𝑘𝑚 

Initial x velocity, �̇�0 −6.4 𝑘𝑚/𝑠 

Initial y velocity, �̇�0 3.8 𝑘𝑚/𝑠 

Initial z velocity, 𝑧0̇ −5.6 𝑘𝑚/𝑠 

 

 

 
Figure 3.1 – LADEE Trajectory plotted in MATLAB 

 

 

3.4 GMAT 

Another tool used to simulate, analyze, or optimize space trajectories is GMAT – a program 

developed by a team of NASA Goddard Space Flight Center employees and private/public 
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industry partners [25]. GMAT will be used to simulate the trajectories of a circular orbit as well 

as the LADEE mission before the first maneuver. The results of GMAT simulations will be 

compared to MATLAB solutions.  

Information necessary to simulate an orbit in GMAT included the following: 

• Epoch format: TDBGregorian 

• Epoch: 07 Sep 2013 04:00:00.000 

• Coordinate system: EarthICRF 

• Initial conditions presented in Tables 3.1 and 3.4 

• Numerical integrator: Runge-Kutta4 

• Propagation time: Elapsed Time: 414,000 seconds 

• Output wanted: Orbital view and a report of positions of spacecraft 

 

GMAT has other features and tools to help simulate accurate orbits such as including other 

perturbation calculations (e.g. drag forces, solar radiation pressure, or point masses), differential 

correctors, or orbital maneuvers. For comparisons, perturbations not included in the N-Body 

model used in this paper will be excluded from GMAT simulations. Any differential correctors 

and orbital maneuvers will also be excluded from GMAT simulations. Although many of the 

perturbation calculations and differential correctors can be excluded from GMAT, at least one 

force model is required [26]. The one known force model included in the GMAT simulations is 

for spherical harmonic gravity – in particular, the Joint Gravity Model (JGM) 2 model.  

 



18 

 

4.0 PROCESS 

4.1 MATLAB and SPICE 

Necessary constants needed for computation are listed in Table 4.1. 

Table 4.1 Constants for Computations 

Constant Value 

Universal Gravitational Constant, G 6.6743015 ∗ 10−20 𝑘𝑚3/𝑘𝑔 𝑠2 

Mass of the spacecraft, 𝑚𝑖 383 𝑘𝑔 

Mass of the Earth, 𝑚𝑞 5.97219 ∗ 1024 𝑘𝑔 

Mass of the Moon, 𝑚1 7.34767 ∗ 1022 𝑘𝑔 

Mass of the Sun, 𝑚2 1.989 ∗ 1030 𝑘𝑔 
 

Also needed are the ephemeris positions of the bodies used for this paper – the Sun, 

Moon and Earth. The ephemeris positions will be called into MATLAB by using SPICE 

functions.  The time frame used to simulate the beginning of the first LADEE Earth phasing 

loops starts on September 7, 2013 04:00:00 and ends September 11, 2013 23:00:00.  

The equations of motion (equations 2.8 – 2.10) for this investigation are second order 

ODEs. The ODEs must be rewritten into a series of first order ODEs so that the solvers can 

compute. An example of rewriting the equations are shown below where eventually 𝑟4̇, 𝑟5̇, and 𝑟6̇ 

are equal to equations 2.8, 2.9 and 2.10 respectively.  

𝑟1 = 𝑥 𝑟1̇ = �̇� 
𝑟2 = 𝑦 𝑟2̇ = �̇� 
𝑟3 = 𝑧 𝑟3̇ = �̇� 
𝑟4 = �̇� 𝑟4̇ = �̈� 
𝑟5 = �̇� 𝑟5̇ = �̈� 
𝑟6 = �̇� 𝑟6̇ = �̈� 

 

4.1.1 Code Flowchart 

 Figure 4.1 is the flowchart of the code. Included is the process to load and unload kernels 

needed from SPICE, use numerical integrators or functions, plotting trajectories, and comparing 

solutions. The complete MATLAB code can be found in Appendices B, C and D. 
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Figure 4.1 – Flowchart of Code 

 

4.1.2 Tool Correction 

During the first round of testing the code, one main issue arose where the output was an 

erroneous, straight line trajectory. The following list were possible errors tested for debugging 

the code: 
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1. ODE45 solver not able to propagate trajectory solution 

2. Incorrect ephemerides called in by SPICE 

3. Incorrect equations of motion 

The first assumption was that the MATLAB ODE45 solver could not correctly propagate the 

solution. A Fixed-Step RK method was considered instead and required coding a new function. 

The Fixed-Step RK method is detailed in Section 1.2. The program ran completely with the 

Fixed-Step RK function, but the same erroneous solution appeared.  

To make sure there were no errors with the newly created Fixed-Step RK function, the 2BP 

equation of motion was tested to solve for a circular orbit. Running the program resulted in an 

expected circular orbit outcome. The MATLAB ODE45 solver tested the same circular orbit case 

and produced the same outcome. This portion of debugging indicated that the Fixed-Step RK 

function and the ODE45 solver were computing as expected.  

The ephemerides from SPICE was investigated next. Using the HORIZONS web-interface, 

text files of the ephemerides were exported and then read into the MATLAB code in place of 

SPICE function calls. Output from this test resulted in the same incorrect trajectory as previous 

test results, thus concluding the SPICE functions are not at fault.  

The last test was to rewrite and check the equations of motion in the MATLAB function file. 

Comparing the derivation of the equations of motion to the coded file provided insight to human 

error. Equations of motion were corrected, and the code was tested again with the ODE45 solver 

and the Fixed-Step RK function. Both solvers generated similar and expected trajectories.  
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4.2 GMAT 

 GMAT utilizes a Graphical User Interface (GUI) where users enter input into specified 

fields. Figure 4.2 to Figure 4.7 depict examples of GMAT windows necessary to obtain a 

simulation of the LADEE trajectory and output the results. After all information has been set, the 

GMAT simulation is ran and any outputs will be displayed in the Output tree of the GMAT GUI. 

Orbital views from the GMAT solution are presented in Section 5 of this paper. 

 
Figure 4.2 – GMAT Spacecraft Window to Input Epoch and Initial Conditions [25] 
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Figure 4.3 – GMAT Propagator Window to Input Numerical Integrator and Force Models [25] 

 

 
 Figure 4.4 – GMAT Mission Window to Input Time Elapsed [25] 
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Figure 4.5 – GMAT Output Window to Generate Orbital View of Trajectory [25] 

 

 
Figure 4.6 – GMAT Output Window to Generate Report of X, Y, Z Positions of Spacecraft [25] 



24 

 

5.0 RESULTS 

5.1 Circular Orbit Results 

5.1.1 MATLAB Results for Circular Orbit Case 

Solutions for the circular orbit using MATLAB ODE45 solver and the coded Fixed-Step 

RK function are shown in Figure 5.1.b and 5.1.c. A comparison of the two solvers is also shown 

in Figure 5.1.a.  As shown in Figure 5.1.a, both solvers resulted in a circular orbit with negligible 

differences. Computations of the differences in position between the two solvers are summarized 

in Table 5.1.  

Figure 5.1 Circular Orbit – (a) Comparison of ODE45 and RK Solutions, (b) ODE45 Solution, 

(c) RK Solution 
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Table 5.1 Circular Orbit - Summary of Differences for ODE45 and RK Solutions 

Maximum Difference (km) Time (s) Mean Difference (km) Mean Percent Difference (%) 

0.009863304 413940 0.00056408 7.6279E-06 
 

5.1.2 GMAT Results for Circular Orbit Case 

 The GMAT simulation for the circular orbit is shown in Figure 5.2. The results of GMAT 

were read and plotted in MATLAB for comparison. The plotted GMAT solution in MATLAB is 

shown in Figure 5.3.  

 
Figure 5.2 Circular Orbit - GMAT Solution 
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Figure 5.3 Circular Orbit - GMAT Solution Plotted in MATLAB 

 

5.1.3 MATLAB and GMAT Comparisons for Circular Orbit Case 

Comparisons of the Fixed-Step RK function and the ODE45 solver against GMAT is 

shown in Figure 5.4. Comparing the positions of the ODE45 solver and the Fixed-Step RK 

function against GMAT is summarized in Table 5.2. Since the ODE45 and Fixed-Step RK 

solutions are similar, the mean differences when comparing them both to GMAT are also similar. 

Once again, overlaying circular orbits are observed. However, there appears to be a slight 

variation seen in Figure 5.4 between GMAT and the MATLAB solvers. From calculated data, 

large differences occur at various time intervals. For example, differences of more than 10 km 

occurred between the time interval of 65,340 seconds to 95,160 seconds. The large differences 

between MATLAB and GMAT trajectories could be attributed to GMAT also computing 
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perturbations due to the harmonic gravity field. Furthermore, the truncation errors are likely to 

accumulate over time which adds to deviations in the solution.  

 

 
Figure 5.4 Circular Orbit – Comparison of All Solutions 

 

 

Table 5.2 Circular Orbit - Summary of Differences for ODE45, RK and GMAT Solutions 

  
Maximum 

Difference (km) Time (s) 
Mean Difference 

(km) 
Mean Percent 
Difference (%) 

ODE45 vs GMAT 91.39419512 413940 -2.377 0.0735 
RK vs GMAT 91.39615857 413940 -2.3776 0.0735 

 

5.2 LADEE Trajectory Results 

5.2.1 MATLAB Results for LADEE Trajectory Case 

LADEE trajectory solutions are plotted and shown in Figure 5.5. A comparison of 

ODE45 and Fixed-Step RK appears in Figure 5.5.a.  Like the circular orbit, the difference 

between the two solvers are negligible. The solvers are then compared to the LADEE trajectory 

taken from SPICE [11] and shown in Figure 5.6. The SPICE LADEE trajectory is considered to 

be the actual LADEE mission flight data. At the beginning, all trajectories seemingly overlap 

until the ODE45 and RK solutions start to depart significantly from the SPICE LADEE 
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trajectory near apogee. Differences greater than 10 km start to appear at 128,520 seconds and 

continues to increase in size. The deviations once again could be contributed to the model not 

simulating gravity harmonics and accumulating truncation errors. Also, since the plotted LADEE 

trajectory is considered actual data, it is highly likely that other perturbations like point masses, 

drag forces, and solar radiation pressure are playing a significant role in its trajectory. The N-

Body model in this paper does not include the mentioned perturbations.  A summary of the 

calculated differences is found in Table 5.3.  

 
Figure 5.5 LADEE Trajectory – (a) Comparison of ODE45 and RK Solutions, (b) ODE45 

Solution, (c) RK Solution 
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Figure 5.6 LADEE Trajectory – Comparison of ODE45, RK and LADEE 

 

Table 5.3 LADEE Trajectory - Summary of Differences for ODE45 and RK Solutions against 

LADEE 

  
Maximum 

Difference (km) Time (s) 
Mean Difference 

(km) 
Mean Percent 
Difference (%) 

ODE45 vs RK 0.066539333 413940 -0.0381 0.000015153 

ODE45 vs LADEE 15973.19946 413940 -3577 1.3752 

RK vs LADEE 15973.266 413940 -3577.1 1.3752 
 

5.2.2 GMAT Results for LADEE Trajectory Case 

The GMAT simulation for the LADEE mission is shown in Figure 5.7. To compare the 

results of GMAT to ODE45 and Fixed-Step RK, GMAT data was read into MATLAB (shown in 

Figure 5.8).  
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Figure 5.7 LADEE Trajectory – GMAT Solution 

 

 
Figure 5.8 LADEE Trajectory – GMAT Solution Plotted in MATLAB 
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5.2.3 MATLAB and GMAT Comparisons for LADEE Trajectory Case 

Comparisons of the Fixed-Step RK function and the ODE45 solver against GMAT is 

shown in Figure 5.9. All the solutions are also compared to the LADEE SPICE data in Figure 

5.9. Compared to the SPICE data for LADEE, the GMAT solution is closer to the ODE45 and 

Fixed-Step RK solutions. Deviations between GMAT and the ODE45/Fixed-Step RK solver can 

once again be attributed to gravity harmonic calculations in GMAT and rounding errors. The 

difference between GMAT and SPICE LADEE trajectory could be attributed to the other force 

models that were not included in the GMAT computations. A summary of differences can be 

found in Table 5.4.  

 

Figure 5.9 LADEE Trajectory – Comparison of All Solutions 
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Table 5.4 LADEE Trajectory - Summary of Differences for ODE45,RK and LADEE against 

GMAT 

  
Maximum 

Difference (km) Time (s) 
Mean Difference 

(km) 
Mean Percent 
Difference (%) 

ODE45 vs GMAT 1512.149932 413940 -638.7883 0.2523 

RK vs GMAT 1512.083392 413940 -638.7502 0.2523 

GMAT vs LADEE 17485.34939 413940 -4215.8 1.6004 
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6.0 SUMMARY 

 In this paper, a code to simulate spacecraft trajectories using a high-fidelity model proved 

successful. Simulations of both a circular orbit and the beginning trajectory of the LADEE 

mission was achieved. However, comparisons of the MATLAB solutions to GMAT showed that 

the N-Body model without other perturbations (drag forces, gravity harmonics, point masses) is 

subject to output less accurate trajectories. Additionally, accumulating rounding errors may also 

be a cause for deviating trajectories. Future work to modify the tool from this paper are 

considered in the next section. 

6.1 Future Work 

 GMAT provided insight to other force models that should be considered to find more 

accurate trajectories. For example, in GMAT, adding the point masses of the Sun and the Moon 

into the simulation made a significant change in the GMAT solution. The resulting GMAT 

trajectory closely resembled the actual LADEE trajectory from SPICE data.  

 The paper also simulates a portion of the LADEE mission before the first maneuver. 

Thrust equations are not modeled so initial conditions after the maneuvers must be taken to 

continue propagating the solution. This causes unrealistic discontinuities in the orbit. Thus, 

future work for the MATLAB code can be to include computations for other perturbations as 

well as orbital maneuvers.  

Other work considered is to test different numerical integrators other than the RK methods 

used in this investigation. Looking into minimizing or correcting truncation errors may also be of 

interest. Use of other programming languages other than MATLAB can also be valuable if the 

solvers show slowness in computation times.  
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Appendix A. SPICE/MICE Functions 

A list of SPICE/MICE functions used when building the code in MATLAB [17]: 

• cspice_furnsh  - function to load SPICE kernels into the MATLAB session. 

• cspice_unload/cspice_kclear – functions that unload SPICE kernels (typically done at the 

end of the program) to avoid incorrect results if running multiple programs using SPICE 

data.  

• cspice_str2et – function to convert time string inputs (e.g. 2013-09-07  03:28:00 TDB) 

into ephemeris time (ephemeris seconds past January 1, 2000 12:00:00 or J2000). 

• cspice_spkpos – function to retrieve position vectors given a specific target, time, 

reference frame, and observer.  

• cspice_spkezr – function to retrieve state vectors given a specific target, time, reference 

frame, and observer.  
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Appendix B. MATLAB Function File for N-Body Equations of Motion  

%% N-Body Function 
% Romalyn Mirador 

  
%% Rewrite 2nd order to 1st order ODEs 
% r(1) = x (x position of spacecraft) 
% r(2) = y (y position of spacecraft) 
% r(3) = z (z position of spacecraft) 
% r(4) = xdot (x velocity of spacecraft) 
% r(5) = ydot (y velocity of spacecraft) 
% r(6) = zdot (z velocity of spacecraft) 

  
% rdot(1) = xdot (x velocity of spacecraft) 
% rdot(2) = ydot (y velocity of spacecraft) 
% rdot(3) = zdot (z velocity of spacecraft) 
% rdot(4) = xdotdot (x acceleration of spacecraft) 
% rdot(5) = ydotdot (y acceleration of spacecraft) 
% rdot(6) = zdotdot (z acceleration of spacecraft) 

  
function rdot = nbody_func(t,r) 
G = 6.6743015* 10^-20; % universal gravitational constant; units: km^3/kg s^2 
m_sc_i = 383; % mi = mass of spacecraft LADEE in kg 
m_earth_q = 5.97219*10^24; % mq = mass of Central Body(Earth) = 5.97219 x 

10^24 kg 
m_moon_1 = 7.34767*10^22; % mj1 = mass of Primary 1 (Moon) = 7.34767 x 10^22 

kg 
m_sun_2 = 1.989*10^30; % mj2 = mass of Primary 2 (Sun) = 1.989 x 10^30 kg 

  
% Call for Ephmerides for Earth, Moon, Sun with SPICE 
% Position for Moon relative to Earth: rqj1 and Position for Sun relative to 

Earth: rqj2 
% Define targets and observer for Moon and Sun 
target1 = 'MOON'; 
target2 = 'SUN'; 
observer = 'EARTH'; 
frame = 'J2000'; %Reference Frame: ICRF/J2000; Coordinate systm: Ecliptic and 

Mean Equinox of Reference Epoch 

  
[pos_moon,ltime]=cspice_spkpos(target1,t,frame,'NONE',observer); 
r_moon_x=pos_moon(1,:); 
r_moon_y=pos_moon(2,:); 
r_moon_z=pos_moon(3,:); 

  
[pos_sun,ltime]=cspice_spkpos(target2,t,frame,'NONE',observer); 
r_sun_x=pos_sun(1,:); 
r_sun_y=pos_sun(2,:); 
r_sun_z=pos_sun(3,:); 

  
% Magnitudes 
riq_sc2earth = sqrt((r(1)^2)+(r(2)^2)+(r(3)^2)); % magnitude of position of 

spacecraft relative to Earth 
rqj1_moon = sqrt((r_moon_x^2)+(r_moon_y^2)+(r_moon_z^2)); % magnitude of 

position of Moon relative to Earth 
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rqj2_sun = sqrt((r_sun_x^2)+(r_sun_y^2)+(r_sun_z^2)); % magnitude of position 

of Sun relative to Earth 

  
% Equations of Motion 
rdot(1) = r(4); 
rdot(2) = r(5);  
rdot(3) = r(6); 
rdot(4) = (-

G*(m_sc_i+m_earth_q)*(r(1)/riq_sc2earth^3))+(G*m_moon_1*(((r(1)+r_moon_x)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_x/rqj1_moon^3)))+(G*m_sun_2*(((r(1)+r_sun_x)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_x/rqj2_sun^3))); 
rdot(5) =  (-

G*(m_sc_i+m_earth_q)*(r(2)/riq_sc2earth^3))+(G*m_moon_1*(((r(2)+r_moon_y)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_y/rqj1_moon^3)))+(G*m_sun_2*(((r(2)+r_sun_y)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_y/rqj2_sun^3))); 
rdot(6) = (-

G*(m_sc_i+m_earth_q)*(r(3)/riq_sc2earth^3))+(G*m_moon_1*(((r(3)+r_moon_z)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_z/rqj1_moon^3)))+(G*m_sun_2*(((r(3)+r_sun_z)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_z/rqj2_sun^3))); 

  
rdot = rdot'; 

  
return 
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Appendix C. MATLAB Function File for Fixed-Step Runge-Kutta Method  

%% Runge-Kutta 4 Fixed-Step Method 
% Romalyn Mirador 

  
function [t,r] = rk(h,t0,tf,r0) 

  
n = (tf-t0)/h; % n = number of equal divisions in interval [t0,tf] where h is 

step-size 

  
%initialize vectors 
t = zeros(n,1); 
t(1) = t0; 
r = zeros(n,6); 
r(1,:) = r0'; 

  
    for i = 1:n-1 
        rprime = nbody_func(h*i,r0); 
        k1 = h*rprime; 

         
        rprime = nbody_func(h*i+h/2,r0+k1/2); 
        k2 = h*rprime; 

         
        rprime = nbody_func(h*i+h/2,r0+k2/2); 
        k3 = h*rprime; 

         
        rprime = nbody_func(h*i+h,r0+k3); 
        k4 = h*rprime; 

         
        r(i+1,:) = r(i,:)+((k1/6)+(k2/3)+(k3/3)+(k4/6))'; 
        t(i+1) = t(i)+h; 
        r0 = r(i+1,:)'; 
    end 
end 
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Appendix D. MATLAB Script for N-Body Trajectories, Plots and 

Comparisons  

%% MASTER'S PROJECT 
% Numerically integrate the n-body model using fixed-step RK4, ode45, 
% and given the ephemerides of Earth, Moon and Sun from JPL's SPICE. 
% Compare solutions with GMAT 
% Author: Romalyn Mirador 

  
clear; close all; clc; 

  
%% Load Kernels Paths 
cspice_furnsh({'sckernel.tm', 

'D:\MATLAB2019\kernels\ladee\spk\ladee_r_13250_13279_pha_v01.bsp'}); 

  
%% Set up/ Initial Conditions for LADEE 
et = cspice_str2et({'2013-09-07 04:00:00 TDB', '2013-09-11 23:00:00 TDB'}); 

%convert string to ephemeris time in seconds past J2000 (J2000=2000 Jan 1 

12:00:00 TDB) 
t0 = 0; %initial ephemeris time in seconds past J2000 (J2000=2000 Jan 1 

12:00:00 TDB) 
tf = et(2)-et(1); %final ephemeris time in seconds past J2000 (J2000=2000 Jan 

1 12:00:00 TDB) 
ti = [t0,tf];%time interval 

  
time_elapsed = et(2) - et(1); 

  
step_size = 60; % seconds; 60 second intervals (h) 
div = (tf-t0)/step_size; 
times = (0:div-1)*step_size; % create an array of div times for a given 

step_size starting at 0 seconds 
times_in_et = times + et(1); % times in actual ephemeris time 

  
% Initial Conditions for circular orbit 
rad_Earth=6378.14; % Earth radius in km 
mu = 3.98600*10^5; %Gravitational parameter; km^3/s^2 

  
r_cir(1) = 35786+rad_Earth; % initial x position of spacecraft 
r_cir(2) = 0; % initial y position of spacecraft 
r_cir(3) = 0; % initial z position of spacecraft 
r_cir(4) = 0; % initial x velocity of spacecraft 
r_cir(5) = sqrt(mu/r_cir(1)); % initial y velocity of spacecraft  
r_cir(6) = 0; % initial z velocity of spacecraft 

  
r0_cir = [r_cir(1); r_cir(2); r_cir(3); r_cir(4); r_cir(5); r_cir(6)]; % 

Column vector for initial conditions 

  
% Define targets and observer for LADEE spacecraft comparison 
target = 'LADEE'; 
observer = 'EARTH'; 
frame = 'J2000'; %Reference Frame: ICRF/J2000; Reference plane/Coordinate 

system: Earth mean equator and equinox of reference epoch 
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[state,ltime]=cspice_spkezr(target,times_in_et,frame,'NONE',observer); % 

finding the state using SPICE 

  
% Positions and Velocities of LADEE from SPICE 
x = state(1,:); % LADEE x position 
y = state(2,:); % LADEE y position 
z = state(3,:); % LADEE z position 
xv = state(4,:); % LADEE x velocity 
yv = state(5,:); % LADEE y velocity 
zv = state(6,:); % LADEE z velocity 

  
% Initial Conditions of LADEE from SPICE at time, t0 
r(1) = x(1); % initial x position of spacecraft 
r(2) = y(1); % initial y position of spacecraft 
r(3) = z(1); % initial z position of spacecraft 
r(4) = xv(1); % initial x velocity of spacecraft 
r(5) = yv(1); % initial y velocity of spacecraft  
r(6) = zv(1); % initial z velocity of spacecraft 

  
r0 = [r(1); r(2); r(3); r(4); r(5); r(6)]; % Column vector for initial 

conditions 

  

  
%% Call in RK fixed-step (with nbody) function  
% Circular Orbit 
[t_rk_cir,r_rk_cir]=rk4_fixed(step_size,t0,tf,r0_cir); 

  
x_rk_cir = r_rk_cir(:,1); % x position of spacecraft - RK Fixed-Step Solution 
y_rk_cir = r_rk_cir(:,2); % y position of spacecraft - RK Fixed-Step Solution 
z_rk_cir = r_rk_cir(:,3); % z position of spacecraft - RK Fixed-Step Solution  
xv_rk_cir = r_rk_cir(:,4); % x velocity of spacecraft - RK Fixed-Step 

Solution 
yv_rk_cir = r_rk_cir(:,5); % y velocity of spacecraft - RK Fixed-Step 

Solution 
zv_rk_cir = r_rk_cir(:,6); % z velocity of spacecraft - RK Fixed-Step 

Solution 

  
% LADEE Trajectory 
[t_rk,r_rk]=rk4_fixed(step_size,t0,tf,r0); 

  
x_rk = r_rk(:,1); % x position of spacecraft - RK Fixed-Step Solution 
y_rk = r_rk(:,2); % y position of spacecraft - RK Fixed-Step Solution 
z_rk = r_rk(:,3); % z position of spacecraft - RK Fixed-Step Solution  
xv_rk = r_rk(:,4); % x velocity of spacecraft - RK Fixed-Step Solution 
yv_rk = r_rk(:,5); % y velocity of spacecraft - RK Fixed-Step Solution 
zv_rk = r_rk(:,6); % z velocity of spacecraft - RK Fixed-Step Solution 

  
%% Call nbody with ODE45 
% Integration tolerances for ODE 45 
ode_opt = odeset('AbsTol', 1e-12, 'RelTol', 1e-12); 

  
% Time from GMAT 
filename_time = 'gmat_time.txt'; 
A_time = importdata(filename_time); 
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t_gmat = A_time(:,1); 

  
% Circular Orbit 
[t_ode45_cir,r_ode45_cir] = ode45(@nbody_func, t_gmat, r0_cir, ode_opt); % 

variable time-step 

  
x_ode45_cir = r_ode45_cir(:,1); % calculated x position of spacecraft 
y_ode45_cir = r_ode45_cir(:,2); % calculated y position of spacecraft 
z_ode45_cir = r_ode45_cir(:,3); % calculated z position of spacecraft 
xv_ode45_cir = r_ode45_cir(:,4); % calculated x velocity of spacecraft 
yv_ode45_cir = r_ode45_cir(:,5); % calculated y velocity of spacecraft 
zv_ode45_cir = r_ode45_cir(:,6); % calculated z velocity of spacecraft 

  
% LADEE Trajectory 
[t_ode45,r_ode45] = ode45(@nbody_func, t_gmat, r0, ode_opt); % variable time-

step 

  
x_ode45 = r_ode45(:,1); % calculated x position of spacecraft 
y_ode45 = r_ode45(:,2); % calculated y position of spacecraft 
z_ode45 = r_ode45(:,3); % calculated z position of spacecraft 
xv_ode45 = r_ode45(:,4); % calculated x velocity of spacecraft 
yv_ode45 = r_ode45(:,5); % calculated y velocity of spacecraft 
zv_ode45 = r_ode45(:,6); % calculated z velocity of spacecraft 

  
%% Circular Orbit - Calculate mean difference and mean percent difference 

  
mag_rk_cir = sqrt((x_rk_cir.^2) + (y_rk_cir.^2) + (z_rk_cir.^2)); % calculate 

the position magnitude fixed-step rk4 
mag_ode45_cir = sqrt((x_ode45_cir.^2) + (y_ode45_cir.^2) + (z_ode45_cir.^2)); 

% calculate the position magnitude ode45 

  
% compare rk4 to ode45 
mag_diff_rk_ode45_cir = mag_rk_cir - mag_ode45_cir; 
mag_ave_rk_ode45_cir = (mag_rk_cir + mag_ode45_cir)/2; 
mag_perdiff_rk_ode45_cir = 

(abs((mag_diff_rk_ode45_cir./mag_ave_rk_ode45_cir)))*100; 
mag_meandiff_rk_ode45_cir = mean(mag_diff_rk_ode45_cir) 
mag_meanperdiff_rk_ode45_cir = mean(mag_perdiff_rk_ode45_cir) 

  
%% Circular Orbit - Comparison to GMAT 

  
% Read in gmat results  
filename_cir = 'gmat_xyz_2bp.txt'; 
delimiterIn_cir = ' '; 
A_cir = importdata(filename_cir, delimiterIn_cir); 

  
x_pos_cir = A_cir(:,1); 
y_pos_cir = A_cir(:,2); 
z_pos_cir = A_cir(:,3); 

  
mag_gmat_cir = sqrt((x_pos_cir.^2)+(y_pos_cir.^2)+(z_pos_cir.^2)); %calculate 

position magnitude gmat 



43 

 

  
%compare rk4 to gmat 
mag_diff_gmat_rk_cir = mag_gmat_cir - mag_rk_cir; 
mag_ave_gmat_rk_cir = (mag_gmat_cir + mag_rk_cir)/2; 
mag_perdiff_gmat_rk_cir = 

(abs((mag_diff_gmat_rk_cir./mag_ave_gmat_rk_cir)))*100; 
mag_meandiff_gmat_rk_cir = mean(mag_diff_gmat_rk_cir) 
mag_meanperdiff_gmat_rk_cir = mean(mag_perdiff_gmat_rk_cir) 

  
%compare ode45 to gmat 
mag_diff_gmat_ode45_cir = mag_gmat_cir - mag_ode45_cir; 
mag_ave_gmat_ode45_cir = (mag_gmat_cir + mag_ode45_cir)/2; 
mag_perdiff_gmat_ode45_cir = 

(abs((mag_diff_gmat_ode45_cir./mag_ave_gmat_ode45_cir)))*100; 
mag_meandiff_gmat_ode45_cir = mean(mag_diff_gmat_ode45_cir) 
mag_meanperdiff_gmat_ode45_cir = mean(mag_perdiff_gmat_ode45_cir) 

  
%% LADEE - Calculate percent difference and percent error 

  
mag_rk = sqrt((x_rk.^2) + (y_rk.^2) + (z_rk.^2)); % calculate the position 

magnitude fixed-step rk4 
mag_ode45 = sqrt((x_ode45.^2) + (y_ode45.^2) + (z_ode45.^2)); % calculate the 

position magnitude ode45 
mag_LADEE = sqrt((x.^2) + (y.^2) + (z.^2)); %calculate the position magnitude 

LADEE 

  
% compare rk4 to LADEE 
mag_diff_rk_LADEE = mag_rk - mag_LADEE'; 
mag_ave_rk_LADEE = (mag_rk + mag_LADEE')/2; 
mag_perdiff_rk_LADEE = (abs((mag_diff_rk_LADEE./mag_ave_rk_LADEE)))*100; 
%mag_pererr_rk_LADEE = (abs(mag_diff_rk_LADEE)./abs(mag_LADEE'))*100; 
mag_meandiff_rk_LADEE = mean(mag_diff_rk_LADEE) 
mag_meanperdiff_rk_LADEE = mean(mag_perdiff_rk_LADEE) 

  
% compare rk4 to ode45 
mag_diff_rk_ode45 = mag_rk - mag_ode45; 
mag_ave_rk_ode45 = (mag_rk + mag_ode45)/2; 
mag_perdiff_rk_ode45 = (abs((mag_diff_rk_ode45./mag_ave_rk_ode45)))*100; 
mag_meandiff_rk_ode45 = mean(mag_diff_rk_ode45) 
mag_meanperdiff_rk_ode45 = mean(mag_perdiff_rk_ode45) 

  
% compare ode45 to LADEE 
mag_diff_ode45_LADEE = mag_ode45 - mag_LADEE'; 
mag_ave_ode45_LADEE = (mag_ode45 + mag_LADEE')/2; 
mag_perdiff_ode45_LADEE = 

(abs((mag_diff_ode45_LADEE./mag_ave_ode45_LADEE)))*100; 
%mag_pererr_ode45_LADEE = (abs(mag_diff_ode45_LADEE)./abs(mag_LADEE'))*100; 
mag_meandiff_ode45_LADEE = mean(mag_diff_ode45_LADEE) 
mag_meanperdiff_ode45_LADEE = mean(mag_perdiff_ode45_LADEE) 

  
%% LADEE - Comparison to GMAT 

  
% Read in gmat results  
filename = 'gmat_xyz.txt'; 
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delimiterIn = ' '; 
A = importdata(filename, delimiterIn); 

  
x_pos = A(:,1); 
y_pos = A(:,2); 
z_pos = A(:,3); 

  
mag_gmat = sqrt((x_pos.^2)+(y_pos.^2)+(z_pos.^2)); %calculate position 

magnitude gmat 

  
%compare rk4 to gmat 
mag_diff_gmat_rk = mag_gmat - mag_rk; 
mag_ave_gmat_rk = (mag_gmat + mag_rk)/2; 
mag_perdiff_gmat_rk = (abs((mag_diff_gmat_rk./mag_ave_gmat_rk)))*100; 
mag_meandiff_gmat_rk = mean(mag_diff_gmat_rk) 
mag_meanperdiff_gmat_rk = mean(mag_perdiff_gmat_rk) 

  
%compare ode45 to gmat 
mag_diff_gmat_ode45 = mag_gmat - mag_ode45; 
mag_ave_gmat_ode45 = (mag_gmat + mag_ode45)/2; 
mag_perdiff_gmat_ode45 = 

(abs((mag_diff_gmat_ode45./mag_ave_gmat_ode45)))*100; 
mag_meandiff_gmat_ode45 = mean(mag_diff_gmat_ode45) 
mag_meanperdiff_gmat_ode45 = mean(mag_perdiff_gmat_ode45) 

  
%compare LADEE to gmat 
mag_diff_gmat_LADEE = mag_gmat - mag_LADEE'; 
mag_ave_gmat_LADEE = (mag_gmat + mag_LADEE')/2; 
mag_perdiff_gmat_LADEE = 

(abs((mag_diff_gmat_LADEE./mag_ave_gmat_LADEE)))*100; 
mag_meandiff_gmat_LADEE = mean(mag_diff_gmat_LADEE) 
mag_meanperdiff_gmat_LADEE = mean(mag_perdiff_gmat_LADEE) 
%% Plot trajectories 

  
% Circular orbit plots 
figure(1) %Subplots of ODE45 and RK and comparisons between the two 
subplot(2,2,[1,2]) 
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45 

trajectory 
hold on 
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory 
title ({'Circular Orbit';'2013-09-07 04:00:00 to 2013-09-11 23:00:00 - ICRF'; 

'(a)Comparison ODE45 and RK'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution 

- Fixed-Step RK') 
axis equal 
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subplot(2,2,3) 
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45 

trajectory 
title ({'(b)ODE45'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
axis equal 

  
subplot(2,2,4) 
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory 
title ({'(c)Fixed-Step RK'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
axis equal 

  

  
figure(2) %GMAT Replotted 
plot3(x_pos_cir,y_pos_cir,z_pos_cir,'k-.') % plot GMAT results 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
title ({'Circular Orbit'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; 'GMAT Solution'}) 
axis equal 

  
figure(3) %Comparisons to GMAT 
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45 

trajectory 
hold on 
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory 
hold on 
plot3(x_pos_cir,y_pos_cir,z_pos_cir,'k-.') % plot GMAT results 
title ({'Circular Orbit'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; 'All Solutions Comparison'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
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surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution 

- Fixed-Step RK','\color{black} GMAT') 
axis equal 

  
% LADEE trajectory plots 
figure(4) %Subplots of ODE45 and RK and comparisons between the two 
subplot(2,2,[1,2]) 
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory 
hold on 
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory 
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; '(a)Comparison ODE45 and RK'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution 

- Fixed-Step RK') 
axis equal 

  
subplot(2,2,3) 
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory 
title ({'(b)ODE45'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
axis equal 

  
subplot(2,2,4) 
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory 
title ({'(c)Fixed-Step RK'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
axis equal 
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figure(5) %LADEE Comparison to ODE45 and RK 
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory 
hold on 
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory 
hold on 
plot3(x,y,z,'r--') % plot LADEE trajectory 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; 'Comparing to SPICE Data'}) 
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution 

- Fixed-Step RK','\color{red} SPICE LADEE Trajectory') 
axis equal 

  
figure(6) %GMAT Replotted 
plot3(x_pos,y_pos,z_pos,'k-.') % plot GMAT results 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; 'GMAT Solution'}) 
axis equal 

  
figure(7) %Comparisons to GMAT 
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory 
hold on 
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory 
hold on 
plot3(x_pos,y_pos,z_pos,'k-.') % plot GMAT results 
hold on  
plot3(x,y,z,'r--') % plot LADEE trajectory 
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 - 

ICRF'; 'All Solutions Comparison'}) 
hold on 
[x_s,y_s,z_s] = sphere(); 
surf( rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s ) % sphere with radius 

rad_Earth centred at (0,0,0) 
hold on 
xlabel 'x position (km)' 
ylabel 'y position (km)' 
zlabel 'z position (km)' 
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution 

- Fixed-Step RK','\color{black} GMAT','\color{red} SPICE LADEE Trajectory') 
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axis equal 
%% Unload Kernels 
cspice_kclear 

 


