
i

SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS MODEL

A Project

Presented to

The Faculty of the Department of Aerospace Engineering

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Romalyn Mirador

i

ABSTRACT

SPACECRAFT TRAJECTORIES IN A SUN, EARTH, AND MOON EPHEMERIS

MODEL

by Romalyn Mirador

This project details the process of building, testing, and comparing a tool to simulate

spacecraft trajectories using an ephemeris N-Body model. Different trajectory models and

methods of solving are reviewed. Using the Ephemeris positions of the Earth, Moon and Sun, a

code for higher-fidelity numerical modeling is built and tested using MATLAB. Resulting

trajectories are compared to NASA’s GMAT for accuracy. Results reveal that the N-Body model

can be used to find complex trajectories but would need to include other perturbations like

gravity harmonics to model more accurate trajectories.

ii

ACKNOWLEDGEMENTS

 I would like to thank my family and friends for their continuous encouragement and

support throughout all these years. A special thank you to my advisor, Dr. Capdevila, and my

friend, Dhathri, for mentoring me as I work on this project. The knowledge and guidance from

the both of you has helped me tremendously and I appreciate everything you both have done to

help me get here.

iii

Table of Contents

List of Symbols ... v

1.0 INTRODUCTION .. 1

1.1 Project Objective ... 1

1.2 Literature Review .. 1

1.2.1 Different Models .. 1

1.2.2 Approaches to Solutions .. 4

1.2.3 Use Cases .. Error! Bookmark not defined.

2.0 THE N-BODY MODEL ... 7

2.1 Derivation of Equations of Motion ... 7

3.0 METHODOLOGY ... 12

3.1 MATLAB .. 12

3.2 SPICE and HORIZONS .. 12

3.3 Benchmark Data .. 14

3.4 GMAT ... 16

4.0 PROCESS ... 18

4.1 MATLAB and SPICE ... 18

4.1.1 Code Flowchart .. 18

4.1.2 Tool Correction .. 19

4.2 GMAT ... 21

5.0 RESULTS ... 24

5.1 Circular Orbit Results.. 24

5.1.1 MATLAB Results for Circular Orbit Case .. 24

5.1.2 GMAT Results for Circular Orbit Case ... 25

5.1.3 MATLAB and GMAT Comparisons for Circular Orbit Case 26

5.2 LADEE Trajectory Results ... 27

5.2.1 MATLAB Results for LADEE Trajectory Case .. 27

5.2.2 GMAT Results for LADEE Trajectory Case ... 29

iv

5.2.3 MATLAB and GMAT Comparisons for LADEE Trajectory Case 31

6.0 SUMMARY .. 33

6.1 Future Work .. 33

References ... 34

Appendix A. SPICE/MICE Functions .. 36

Appendix B. MATLAB Function File for N-Body Equations of Motion 37

Appendix C. MATLAB Function File for Fixed-Step Runge-Kutta Method 39

Appendix D. MATLAB Script for N-Body Trajectories, Plots and Comparisons 40

v

List of Symbols

Symbol Definition Units (SI)

𝑓 Forces exerted on body of interest 𝑁

𝐺 Universal Gravitational Constant 𝑘𝑚3 𝑘𝑔 𝑠2⁄

𝑚 Mass 𝑚

𝑃 Particle/Body
𝑟 Magnitude of position vector 𝑘𝑚

𝑟 Position vector 𝑘𝑚

�̇� Velocity vector 𝑘𝑚/𝑠

�̈� Acceleration vector 𝑘𝑚/𝑠2

𝑥 x position Cartesian coordinate 𝑘𝑚

𝑦 y position Cartesian coordinate 𝑘𝑚

𝑧 z position Cartesian coordinate 𝑘𝑚

�̇� x velocity Cartesian coordinate 𝑘𝑚/𝑠

�̇� y velocity Cartesian coordinate 𝑘𝑚/𝑠

�̇� z velocity Cartesian coordinate 𝑘𝑚/𝑠

�̈� x acceleration Cartesian coordinate 𝑘𝑚/𝑠2

�̈� y acceleration Cartesian coordinate 𝑘𝑚/𝑠2

�̈� z acceleration Cartesian coordinate 𝑘𝑚/𝑠2

Subscripts

()𝑖 Body of interest (Spacecraft)

()𝑗 Additional bodies in system

()𝑞 Central body (Earth)

()𝑖𝑗 Motion of body of interest relative to additional body

()𝑖𝑞 Motion of body of interest relative to central body

()𝑞𝑗 Motion of central body relative to additional body

()0 Initial condition

()1 Additional body in system (Moon)

()2 Additional body in system (Sun)

Acronyms

2BP Two-Body Problem

GMAT General Mission Analysis Tool

ICRF International Celestial Reference Frame

LADEE Lunar Atmosphere and Dust Environment Explorer

NAIF Navigation and Ancillary Information Facility

ODE Ordinary Differential Equation

RK Runge-Kutta

1

1.0 INTRODUCTION

1.1 Project Objective

Finding accurate spacecraft trajectory, especially in regimes where multiple bodies are

acting on the spacecraft, is not a trivial task. The Two-Body Problem (2BP) is used to model

spacecraft trajectories in the close vicinity of a heavenly body. However, the 2BP does not take

gravitational effects from other large bodies or other perturbations like solar radiation pressure,

into account. When more bodies are added, the model becomes more complex, albeit accurate.

This project develops a higher-fidelity model - an ephemeris N-Body model. Using the

Ephemeris positions of the Earth, Moon and Sun, the goal of this investigation is to build and test

a code of a higher-fidelity numerical model for trajectory design. The tool is tested and compared

to NASA’s General Mission Analysis Tool (GMAT) for accuracy.

1.2 Literature Review

Since the 1600s, Johannes Kepler’s research into planetary motion combined with

Newton’s Laws have shaped the ideas of orbital mechanics and spaceflight [1]. Kepler and

Newton’s laws are the basis of spacecraft trajectory models that have been extensively studied

and researched today.

1.2.1 Different Models

The most used model is the 2BP as it has a complete analytical solution. Practically, orbital

mechanics problems can be solved by using the 2BP model as a starting point to calculate

approximate parameters and trajectories [2]. For example, an article presented by Hsiao et al. [3]

2

investigates spacecraft trajectories with a photonic laser propulsion system. The authors use the

2BP to help design the spacecraft mission.

 Derivation for the two-body problem can found in Bate et al. [1, pp.11-14] using the

assumptions:

• The two bodies are spherically symmetric

• No other external or internal forces are acting on the system

The equation of motion for the 2BP is presented in equation 1.1 where �̈� is the acceleration

vector, 𝑟 is the position vector, 𝑟 is the magnitude of the position, and 𝜇 is the gravitational

parameter (𝜇 = 𝐺𝑀).

�̈� +
𝜇

𝑟3
𝑟 = 0 (1.1)

Adding one more body into the system, the resulting three-body problem arises. A known

three-body model is called the Circular Restricted Three Body Problem (CRTBP). A

comprehensive text on and full derivation of the CRTBP can be found in The Theory of Orbits

by Victor Szebehely [4]. From the text, the following simplifying assumptions are used for

derivation of the CRTBP:

• Two of the bodies revolve in a circular orbit about their common center of mass

(barycenter)

• The two revolving bodies are considered point masses

• The third body has a mass much smaller than the other two bodies that it does not affect

the motion of the larger bodies

The CRTBP is one of the models that is seen commonly used for trajectory design in multi-

body dynamical regimes. An example of CRTBP’s use in recent studies comes from Pavlak’s

3

dissertation [5]. A set of nondimensional, scalar, second order ODE equations of motion of a

body of interest (the spacecraft) was derived and presented here in equations 1.2 to 1.4. [5]

�̈� − 2�̇� − 𝑥 = −
(1 − 𝜇)(𝑥 + 𝜇)

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇(𝑥 − 1 + 𝜇)

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.2)

�̈� + 2�̇� − 𝑦 = −
(1 − 𝜇)𝑦

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇𝑦

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.3)

�̈� = −
(1 − 𝜇)𝑧

(√(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2)
3 −

𝜇𝑧

(√(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2)
3 (1.4)

 In these equations, 𝜇 represents the nondimensional mass parameter of the mass of a

second body, 𝑚2, divided by the characteristic mass, 𝑚∗. Pavlak uses these derived equations of

motion to better prepare for its numerical integration and to easily compare solutions of different

three body systems. [5]

Other examples of CRTBP use includes:

• A thesis by Brick [6] that explores high altitude satellite trajectories to remotely sense

the surface of the Earth for military applications (such as surveillance and global

communications)

• An article by Tantardini et al. [7] discussing possible missions to the third libration

point, L3, to insert a space observatory satellite

Other variations of equations of motion for the general three body problem have also been

derived. For example, in an article presented by Bombardelli and Bernal Mencia [8], the CRTBP

equations of motion are derived in cylindrical curvilinear coordinates instead of Cartesian

coordinates. With the new derivation, a new analytical tool and an expansion to the averaged

third body disturbing function were found to aid in their study of co-orbital motion. [8]

4

When deriving the equations of motion for multiple bodies without using simplifying

assumptions (as in the case for the 2BP or CRTBP), the resulting derivation gives the higher-

fidelity N-body model. The N-Body model can consider all gravitational and other external

forces (such as drag and solar radiation pressure) acting on the body of study. A derivation of the

N-body model is seen in Section 2.1 of this paper based on the derivation from Roy [2] and

Capdevila [9].

1.2.2 Numerical Methods

Unlike the 2BP where a closed form solution can be found, models with more than 2

bodies present challenges in obtaining a solution. From the reviewed research, the common

concept to solve for multi-body trajectory problems is to approximate solutions using numerical

methods. This could be done by building a code or by using applications that already have a

library of numerical integration solvers.

In a thesis presented by Wilmer [10], Wilmer uses MATLAB and its library of solvers to

numerically integrate the CRTBP equations of motion found in his thesis. One of MATLAB’s

ODE solvers (ODE45) is based on an explicit Runge-Kutta formula, the Dormand-Prince pair

[11]. The Runge-Kutta formula is used to solve for a first order system of ODEs in the form of

equation 1.5 and a known initial condition, 𝑦(𝑥0).

𝑦′(𝑥) = 𝑓[𝑥, 𝑦(𝑥)] (1.5)

 The explicit Runge -Kutta formula [12] is given by equation 1.6 to approximate the

solution, 𝑦𝑛, at points, 𝑥𝑛, where 𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛, ℎ𝑛 = 𝜃(ℎ𝑛)ℎ and 0 < 𝜃(𝑥𝑛) < 1.

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑛Φ(𝑦𝑛, ℎ𝑛) = 𝑦𝑛 + ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

 (1.6)

5

𝑘1 = ℎ𝑛𝑓(𝑦𝑛)

𝑘𝑖 = ℎ𝑛𝑓 (𝑦𝑛 + ∑𝑎𝑖𝑗𝑘𝑗

𝑖−1

𝑗=1

)

A similar numerical method also in the Runge-Kutta family is the Fixed-Step Runge-

Kutta (RK) function. A known and commonly used fixed-step RK method is the classic fourth

order RK method (RK4) detailed by Cheever [13]. Similar to the explicit RK formula for

ODE45, the RK4 method approximates a solution for a first order ODE in the form of equation

1.7 and initial condition of 𝑦(𝑡0) = 𝑦0.

𝑑𝑦(𝑡)

𝑑𝑡
= 𝑦′(𝑡) = 𝑓(𝑦(𝑡), 𝑡) (1.7)

To find the estimation of the solution, 𝑦(𝑡), slope estimates are calculated first with a

fixed step-size of h (shown in equations 1.8 to 1.11) and then summed in equation 1.12.

𝑘1 = 𝑓(𝑦(𝑡0), 𝑡0) (1.8)

𝑘2 = 𝑓(𝑦(𝑡0) + 𝑘1

ℎ

2
, 𝑡0 +

ℎ

2
) (1.9)

𝑘3 = 𝑓(𝑦(𝑡0) + 𝑘2

ℎ

2
, 𝑡0 +

ℎ

2
) (1.10)

𝑘4 = 𝑓(𝑦(𝑡0) + 𝑘3ℎ, 𝑡0 + ℎ) (1.11)

𝑦(𝑡0 + ℎ) = 𝑦(𝑡0) +
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

6
ℎ (1.12)

Scott and Martini [14] tested another numerical integrator. The authors used a Taylor Series

integration and NASA’s Spacecraft N-body Analysis Program (SNAP) to calculate spacecraft

trajectories. By using the Taylor series, a solution is found quicker than using an eighth-order

Runge-Kutta Fehlberg method. [14]

6

Other approaches to finding a spacecraft’s trajectory does not always use a numerical

integrator. For example, a method described by Zhang et al. [15] is to use a periodic orbit

computation. The article describes utilizing the symmetry of the CRTBP to derive a new kind of

periodic orbit computation that does not require a starting analytic approximation or state

transition matrix. Erwin and Bernstein [16] takes an approach to use incoming data to estimate a

target satellite’s trajectory. Using an extended Kalman filter algorithm and range measurements

from the other satellites in orbit, the authors’ found an estimation of the eccentricity and

inclination of the target satellite’s orbit.

7

2.0 THE N-BODY MODEL

2.1 Derivation of Equations of Motion

The geometry of n number of bodies (depicted by P) of mass, m in a Newtonian (or non-

accelerating) frame is shown in Figure 2.1. Motions of the bodies in inertial space are relative to

a non-accelerating point, O. Positions of the particles relative to the origin, O, are denoted by 𝑟𝑖⃗⃗⃗

and 𝑟�⃗⃗⃗�. Positions of the particles relative to the particle of interest, 𝑃𝑖, are denoted by 𝑟𝑖𝑗⃗⃗ ⃗⃗ .

Figure 2.1 N-Body Model Geometry in Inertial Frame

The equation of motion for the N-Body system can be derived by using Newton’s Law of

Universal Gravitation and Newton’s Law of Motion. Starting with Newton’s Law of Universal

Gravitation, the sum of the forces exerted on the spacecraft, 𝑃𝑖, is shown in equation 2.1.

𝑓𝑖⃗⃗⃗ = −𝐺 ∑
𝑚𝑖𝑚𝑗

𝑟𝑖𝑗
3 𝑟𝑖𝑗⃗⃗ ⃗⃗

𝑛

𝑗=1,𝑗≠𝑖

 (2.1)

8

Using Newton’s Law of Motion and substituting in equation 2.1 and the vector

property, 𝑟𝑖𝑗⃗⃗ ⃗⃗ = −𝑟𝑗𝑖⃗⃗⃗⃗ , equation 2.2 is the resulting N-Body model.

𝑚𝑖𝑟𝑖⃗⃗⃗
̈ = 𝑓𝑖⃗⃗⃗

𝑟𝑖⃗⃗⃗
̈ = 𝐺 ∑

𝑚𝑗

𝑟𝑗𝑖
3 𝑟𝑗𝑖⃗⃗⃗⃗

𝑛

𝑗=1,𝑗≠𝑖

 (2.2)

When evaluating the N-Body model, every body, 𝑃𝑗, that is introduced creates six more

unknowns (x, y and z positions and velocities). To reduce the number of unknowns, find the

motion of a particle, 𝑃𝑖, relative to the motion of another particle, 𝑃𝑞, as shown in Figure 2.2.

Figure 2.2 Motion of Particle i relative to Particle q

Equation 2.3 is found by using vector addition and taking the derivatives of equation 2.3

gives the velocity vector (equation 2.4) and the acceleration vector (equation 2.5).

𝑟𝑖𝑞⃗⃗⃗⃗⃗ = 𝑟𝑞⃗⃗⃗ ⃗ − 𝑟𝑖⃗⃗⃗ (2.3)

9

𝑟𝑖𝑞⃗⃗⃗⃗ ̇ = 𝑟𝑞⃗⃗⃗ ̇ − 𝑟𝑖⃗⃗ ̇ (2.4)

𝑟𝑖𝑞⃗⃗⃗⃗ ̈ = 𝑟𝑞⃗⃗⃗ ̈ − 𝑟𝑖⃗⃗ ̈ (2.5)

Finding the equations of motion for bodies 𝑃𝑖 and 𝑃𝑞, substituting into equation 2.5 and

using vector properties yields equation 2.6, the final form of the N-Body model.

𝑟𝑖⃗⃗⃗
̈ = 𝐺 ∑

𝑚𝑗

𝑟𝑗𝑖
3 𝑟𝑗𝑖⃗⃗⃗⃗

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

+ 𝐺
𝑚𝑞

𝑟𝑞𝑖
3 𝑟𝑞𝑖⃗⃗⃗⃗⃗

𝑟𝑞⃗⃗⃗ ⃗̈ = 𝐺 ∑
𝑚𝑗

𝑟𝑗𝑞
3 𝑟𝑗𝑞⃗⃗⃗⃗⃗

𝑛

𝑗=1,≠𝑖,𝑗≠𝑞

+ 𝐺
𝑚𝑖

𝑟𝑖𝑞
3 𝑟𝑖𝑞⃗⃗⃗⃗⃗

𝑟𝑖𝑞⃗⃗⃗⃗⃗̈ = 𝐺 ∑ 𝑚𝑗 (
𝑟𝑖𝑗⃗⃗ ⃗⃗

𝑟𝑖𝑗
3 −

𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

𝑟𝑞𝑗
3)

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

− 𝐺(𝑚𝑞 + 𝑚𝑖)
𝑟𝑞𝑖⃗⃗⃗⃗⃗

𝑟𝑞𝑖
3 (2.6)

Although the model is derived using an arbitrary inertial base point, it is easier to

calculate the motion of the body of interest with respect to a central body. Figure 2.3 presents the

N-Body model geometry where the central body, 𝑃𝑞, represents the Earth, the body of interest,

𝑃𝑖, represents the spacecraft, and all other bodies, 𝑃𝑗, represent additional celestial bodies,

specifically the Sun and Moon. The position of the spacecraft relative to the Earth is denoted by

𝑟𝑖𝑞⃗⃗⃗⃗⃗. The position of the spacecraft relative to the Moon and Sun is denoted by 𝑟𝑖𝑗⃗⃗ ⃗⃗ . Positions of the

Sun and Moon relative to the Earth are denoted by 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗.

10

Figure 2.3 N-Body Model Geometry relative to Central Body, 𝑃𝑞

Further reducing the number of unknowns, 𝑟𝑖𝑗⃗⃗ ⃗⃗ is rewritten in terms of 𝑟𝑖𝑞⃗⃗⃗⃗⃗ and 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗ and the

resulting N-Body model is shown in equation 2.7.

𝑟𝑖𝑞⃗⃗⃗⃗⃗̈ = 𝐺 ∑ 𝑚𝑗 (
𝑟𝑖𝑞⃗⃗⃗⃗⃗ + 𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

(𝑟𝑖𝑞 + 𝑟𝑞𝑗)
3 −

𝑟𝑞𝑗⃗⃗ ⃗⃗ ⃗

𝑟𝑞𝑗
3) −

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

𝐺(𝑚𝑞 + 𝑚𝑖)
𝑟𝑞𝑖⃗⃗⃗⃗⃗

𝑟𝑞𝑖
3 (2.7)

Equation 2.7 does not consider other external forces such as drag, thrust, or solar

radiation pressure. For the scope of this project, only gravitation forces will be addressed for

simplification. Equations 2.8 – 2.10 are the expanded Cartesian coordinate forms of the N-Body

model.

11

�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 𝑥𝑖𝑞 + 𝑥𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2)
3 −

𝑥𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2)

3

)

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑥𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2)

3

(2.8)

�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 𝑦𝑖𝑞 + 𝑦𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2)
3 −

𝑦𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2)

3

)

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑦𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2)

3

(2.9)

�̈�𝑖𝑞 = 𝐺 ∑ 𝑚𝑗

(

 𝑧𝑖𝑞 + 𝑧𝑞𝑗

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2 + √𝑥𝑞𝑗

2 + 𝑦𝑞𝑗
2 + 𝑧𝑞𝑗

2)
3 −

𝑧𝑞𝑗

(√𝑥𝑞𝑗
2 + 𝑦𝑞𝑗

2 + 𝑧𝑞𝑗
2)

3

)

𝑛

𝑗=1,𝑗≠𝑖,𝑗≠𝑞

−𝐺(𝑚𝑞 + 𝑚𝑖)
𝑧𝑖𝑞

(√𝑥𝑖𝑞
2 + 𝑦𝑖𝑞

2 + 𝑧𝑖𝑞
2)

3

(2.10)

12

3.0 METHODOLOGY

 Building and testing the code to model trajectories of a spacecraft will be done in

MATLAB. Reading in the ephemerides of the Earth, Moon and Sun for computations is

integrated into MATLAB using NASA JPL’s SPICE toolkit. The circular orbit and the LADEE

mission trajectory are used as test cases for the numerical model. Finally, the results are

compared to NASA’s GMAT program.

3.1 MATLAB

MATLAB was chosen as the main tool for programming as it already has built-in math

functions and visualization tools, thus saving on time on programming in traditional languages

(e.g. C/C++). One of the built-in math functions of importance are the solvers for ordinary

differential equations (ODE) – particularly ODE45. Section 1.2 of this paper describes the

numerical method used for ODE45.

The ODE45 solver will be used to solve for the N-Body model. Additionally, a Fixed-Step

Runge-Kutta (RK) function will be created to also evaluate the N-body model. Initial conditions

are taken for a circular orbit and from the LADEE mission (section 3.3). Solutions will then be

plotted to visualize and compare the subsequent spacecraft trajectories.

3.2 SPICE and HORIZONS

SPICE is an information system built by NASA JPL’s Navigation and Ancillary

Information Facility (NAIF) and contains data such as planet ephemerides or a spacecraft’s

orientation at a given time in space. Data from SPICE can be used to compute observation

13

geometry (e.g. positions and velocities of spacecraft) to help with space mission design. SPICE

data can be accessed through files known as kernels which a user can call into their program or

application. [17]

HORIZONS, which is from NASA JPL’s Solar System Dynamics team, is another way

to access ephemerides for celestial objects. Unlike SPICE, the ephemerides can be accessed

through a web-based interface and can output text files. Users can easily obtain planetary

positions for a few specific times. However, for larger time frames and computations, it is ideal

to use SPICE toolkits for an more efficient integration into programs. [18]

 For the purposes of this paper, the SPICE toolkit, MICE, will be integrated into

MATLAB so that the ephemeris positions of the n-bodies can be called in to compute a

spacecraft’s trajectory. Functions that will be used is listed in Appendix A.

Kernels as well as time frames that will be used are associated with the LADEE mission

(discussed in Section 3.3). Specifically, the kernels used are [19]:

• naif0010.tls – kernel containing leap second data up to July 1, 2012.

• de432s.bsp – kernel for Planetary Ephmerides DE432.

• pck00010.tpc – kernel providing 2009 IAU constants.

• ladee_r_13250_13279_pha_v01.bsp – LADEE trajectory kernel for all Earth

phasing orbits and latter part of launch. [20]

• ladee_r_13278_13325_loa_v01.bsp – LADEE trajectory kernel for lunar orbit

acquisition. [21]

14

• ladee_r_13325_14108_sci_v01.bsp – LADEE trajectory kernel for science phase.

[22]

• ladee_r_14108_99001_imp_v01.bsp – LADEE trajectory kernel for end-of-

mission. [23]

An inertial reference frame, centered at the Earth’s center, will be used. In SPICE, this

frame is the J2000 frame, or the International Celestial Reference Frame (ICRF). SPICE

considers the J2000 frame and the ICRF as the same frame because the difference between them

is small. When SPICE data is referencing J2000 frame, it is referencing ICRF. The coordinate

system lies on the Equatorial plane with the x-axis at the Earth Mean Equator, the y-axis at the

Equinox of Reference epoch, and the z-axis normal to the mean equator of date at epoch.

3.3 Benchmark Data

To validate that the code is working as expected, a known solution for the 2BP will be

simulated in both MATLAB and GMAT. The initial conditions given are for a geostationary

circular orbit shown in Table 3.1.

Table 3.1 Initial Conditions for a Circular Orbit

Initial Condition Value

Initial x position, 𝑥0 42,164 km

Initial y position, 𝑦0 0 𝑘𝑚

Initial z position, 𝑧0 0 𝑘𝑚

Initial x velocity, �̇�0 0 𝑘𝑚/𝑠

Initial y velocity, �̇�0 3.0747 𝑘𝑚/𝑠

Initial z velocity, 𝑧0̇ 0 𝑘𝑚/𝑠

15

After validation of the code, the next test case used will be the Lunar Atmosphere and

Dust Environment Explorer (LADEE) mission. The purpose of the LADEE mission was to

observe the lunar atmosphere at low altitudes. On September 7, 2013 03:27 UTC, LADEE was

launched on a Minotaur-V launch vehicle and afterwards entered a phasing loop trajectory. There

are three phasing loop orbits around the Earth before reaching its final trajectory around the

Moon. The amount of time for the phasing loops to be completed is shown in Table 3.2. [24]

Table 3.2 Number of Days to Complete Phasing Loops [24]

Phase Days

Insertion orbit - Earth 6.4

Second phasing loop - Earth 8.2

Third phasing loop - Earth 9.9

Transfer orbit – Earth to Moon 4.9

SPICE data for the LADEE mission is used as benchmark data. The motivation to use the

LADEE mission as benchmark data came from wanting to simulate a mission to the moon as

well as the availability of trajectory data from SPICE. Although there are maneuvers performed

during the phasing loops, the scope of this project will focus on the first Earth phasing loop

before the first maneuver. A list of maneuvers performed during the three phasing loops and

lunar orbit insertion are shown in Table 3.3.

Table 3.3 LADEE Maneuvers [24]
Maneuver Date / Time (UTC)

Apogee Maneuver 1B 11 Sep 2013 23:00

Perigee Maneuver 1 13 Sep 2013 16:36

Perigee Maneuver 2 21 Sep 2013 11:53

Trajectory Correction Maneuver 1 01 Oct 2013 22:00

Lunar Orbit Insertion 1 06 Oct 2013 10:57

Lunar Orbit Insertion 2 09 Oct 2013 8:16

Lunar Orbit Insertion 3 13 Oct 2013 02:57

16

Initial conditions were also taken from the SPICE data of LADEE trajectory at

September 7, 2013 04:00 TDB (shown in Table 3.4). The LADEE trajectory appears in Figure

3.1.

Table 3.4 Initial Conditions for LADEE Trajectory

Initial Condition Value

Initial x position, 𝑥0 1190 𝑘𝑚

Initial y position, 𝑦0 8209.1 𝑘𝑚

Initial z position, 𝑧0 −3341.6 𝑘𝑚

Initial x velocity, �̇�0 −6.4 𝑘𝑚/𝑠

Initial y velocity, �̇�0 3.8 𝑘𝑚/𝑠

Initial z velocity, 𝑧0̇ −5.6 𝑘𝑚/𝑠

Figure 3.1 – LADEE Trajectory plotted in MATLAB

3.4 GMAT

Another tool used to simulate, analyze, or optimize space trajectories is GMAT – a program

developed by a team of NASA Goddard Space Flight Center employees and private/public

17

industry partners [25]. GMAT will be used to simulate the trajectories of a circular orbit as well

as the LADEE mission before the first maneuver. The results of GMAT simulations will be

compared to MATLAB solutions.

Information necessary to simulate an orbit in GMAT included the following:

• Epoch format: TDBGregorian

• Epoch: 07 Sep 2013 04:00:00.000

• Coordinate system: EarthICRF

• Initial conditions presented in Tables 3.1 and 3.4

• Numerical integrator: Runge-Kutta4

• Propagation time: Elapsed Time: 414,000 seconds

• Output wanted: Orbital view and a report of positions of spacecraft

GMAT has other features and tools to help simulate accurate orbits such as including other

perturbation calculations (e.g. drag forces, solar radiation pressure, or point masses), differential

correctors, or orbital maneuvers. For comparisons, perturbations not included in the N-Body

model used in this paper will be excluded from GMAT simulations. Any differential correctors

and orbital maneuvers will also be excluded from GMAT simulations. Although many of the

perturbation calculations and differential correctors can be excluded from GMAT, at least one

force model is required [26]. The one known force model included in the GMAT simulations is

for spherical harmonic gravity – in particular, the Joint Gravity Model (JGM) 2 model.

18

4.0 PROCESS

4.1 MATLAB and SPICE

Necessary constants needed for computation are listed in Table 4.1.

Table 4.1 Constants for Computations

Constant Value

Universal Gravitational Constant, G 6.6743015 ∗ 10−20 𝑘𝑚3/𝑘𝑔 𝑠2

Mass of the spacecraft, 𝑚𝑖 383 𝑘𝑔

Mass of the Earth, 𝑚𝑞 5.97219 ∗ 1024 𝑘𝑔

Mass of the Moon, 𝑚1 7.34767 ∗ 1022 𝑘𝑔

Mass of the Sun, 𝑚2 1.989 ∗ 1030 𝑘𝑔

Also needed are the ephemeris positions of the bodies used for this paper – the Sun,

Moon and Earth. The ephemeris positions will be called into MATLAB by using SPICE

functions. The time frame used to simulate the beginning of the first LADEE Earth phasing

loops starts on September 7, 2013 04:00:00 and ends September 11, 2013 23:00:00.

The equations of motion (equations 2.8 – 2.10) for this investigation are second order

ODEs. The ODEs must be rewritten into a series of first order ODEs so that the solvers can

compute. An example of rewriting the equations are shown below where eventually 𝑟4̇, 𝑟5̇, and 𝑟6̇

are equal to equations 2.8, 2.9 and 2.10 respectively.

𝑟1 = 𝑥 𝑟1̇ = �̇�
𝑟2 = 𝑦 𝑟2̇ = �̇�
𝑟3 = 𝑧 𝑟3̇ = �̇�
𝑟4 = �̇� 𝑟4̇ = �̈�
𝑟5 = �̇� 𝑟5̇ = �̈�
𝑟6 = �̇� 𝑟6̇ = �̈�

4.1.1 Code Flowchart

 Figure 4.1 is the flowchart of the code. Included is the process to load and unload kernels

needed from SPICE, use numerical integrators or functions, plotting trajectories, and comparing

solutions. The complete MATLAB code can be found in Appendices B, C and D.

19

Figure 4.1 – Flowchart of Code

4.1.2 Tool Correction

During the first round of testing the code, one main issue arose where the output was an

erroneous, straight line trajectory. The following list were possible errors tested for debugging

the code:

20

1. ODE45 solver not able to propagate trajectory solution

2. Incorrect ephemerides called in by SPICE

3. Incorrect equations of motion

The first assumption was that the MATLAB ODE45 solver could not correctly propagate the

solution. A Fixed-Step RK method was considered instead and required coding a new function.

The Fixed-Step RK method is detailed in Section 1.2. The program ran completely with the

Fixed-Step RK function, but the same erroneous solution appeared.

To make sure there were no errors with the newly created Fixed-Step RK function, the 2BP

equation of motion was tested to solve for a circular orbit. Running the program resulted in an

expected circular orbit outcome. The MATLAB ODE45 solver tested the same circular orbit case

and produced the same outcome. This portion of debugging indicated that the Fixed-Step RK

function and the ODE45 solver were computing as expected.

The ephemerides from SPICE was investigated next. Using the HORIZONS web-interface,

text files of the ephemerides were exported and then read into the MATLAB code in place of

SPICE function calls. Output from this test resulted in the same incorrect trajectory as previous

test results, thus concluding the SPICE functions are not at fault.

The last test was to rewrite and check the equations of motion in the MATLAB function file.

Comparing the derivation of the equations of motion to the coded file provided insight to human

error. Equations of motion were corrected, and the code was tested again with the ODE45 solver

and the Fixed-Step RK function. Both solvers generated similar and expected trajectories.

21

4.2 GMAT

 GMAT utilizes a Graphical User Interface (GUI) where users enter input into specified

fields. Figure 4.2 to Figure 4.7 depict examples of GMAT windows necessary to obtain a

simulation of the LADEE trajectory and output the results. After all information has been set, the

GMAT simulation is ran and any outputs will be displayed in the Output tree of the GMAT GUI.

Orbital views from the GMAT solution are presented in Section 5 of this paper.

Figure 4.2 – GMAT Spacecraft Window to Input Epoch and Initial Conditions [25]

22

Figure 4.3 – GMAT Propagator Window to Input Numerical Integrator and Force Models [25]

 Figure 4.4 – GMAT Mission Window to Input Time Elapsed [25]

23

Figure 4.5 – GMAT Output Window to Generate Orbital View of Trajectory [25]

Figure 4.6 – GMAT Output Window to Generate Report of X, Y, Z Positions of Spacecraft [25]

24

5.0 RESULTS

5.1 Circular Orbit Results

5.1.1 MATLAB Results for Circular Orbit Case

Solutions for the circular orbit using MATLAB ODE45 solver and the coded Fixed-Step

RK function are shown in Figure 5.1.b and 5.1.c. A comparison of the two solvers is also shown

in Figure 5.1.a. As shown in Figure 5.1.a, both solvers resulted in a circular orbit with negligible

differences. Computations of the differences in position between the two solvers are summarized

in Table 5.1.

Figure 5.1 Circular Orbit – (a) Comparison of ODE45 and RK Solutions, (b) ODE45 Solution,

(c) RK Solution

25

Table 5.1 Circular Orbit - Summary of Differences for ODE45 and RK Solutions

Maximum Difference (km) Time (s) Mean Difference (km) Mean Percent Difference (%)

0.009863304 413940 0.00056408 7.6279E-06

5.1.2 GMAT Results for Circular Orbit Case

 The GMAT simulation for the circular orbit is shown in Figure 5.2. The results of GMAT

were read and plotted in MATLAB for comparison. The plotted GMAT solution in MATLAB is

shown in Figure 5.3.

Figure 5.2 Circular Orbit - GMAT Solution

26

Figure 5.3 Circular Orbit - GMAT Solution Plotted in MATLAB

5.1.3 MATLAB and GMAT Comparisons for Circular Orbit Case

Comparisons of the Fixed-Step RK function and the ODE45 solver against GMAT is

shown in Figure 5.4. Comparing the positions of the ODE45 solver and the Fixed-Step RK

function against GMAT is summarized in Table 5.2. Since the ODE45 and Fixed-Step RK

solutions are similar, the mean differences when comparing them both to GMAT are also similar.

Once again, overlaying circular orbits are observed. However, there appears to be a slight

variation seen in Figure 5.4 between GMAT and the MATLAB solvers. From calculated data,

large differences occur at various time intervals. For example, differences of more than 10 km

occurred between the time interval of 65,340 seconds to 95,160 seconds. The large differences

between MATLAB and GMAT trajectories could be attributed to GMAT also computing

27

perturbations due to the harmonic gravity field. Furthermore, the truncation errors are likely to

accumulate over time which adds to deviations in the solution.

Figure 5.4 Circular Orbit – Comparison of All Solutions

Table 5.2 Circular Orbit - Summary of Differences for ODE45, RK and GMAT Solutions

Maximum

Difference (km) Time (s)
Mean Difference

(km)
Mean Percent
Difference (%)

ODE45 vs GMAT 91.39419512 413940 -2.377 0.0735
RK vs GMAT 91.39615857 413940 -2.3776 0.0735

5.2 LADEE Trajectory Results

5.2.1 MATLAB Results for LADEE Trajectory Case

LADEE trajectory solutions are plotted and shown in Figure 5.5. A comparison of

ODE45 and Fixed-Step RK appears in Figure 5.5.a. Like the circular orbit, the difference

between the two solvers are negligible. The solvers are then compared to the LADEE trajectory

taken from SPICE [11] and shown in Figure 5.6. The SPICE LADEE trajectory is considered to

be the actual LADEE mission flight data. At the beginning, all trajectories seemingly overlap

until the ODE45 and RK solutions start to depart significantly from the SPICE LADEE

28

trajectory near apogee. Differences greater than 10 km start to appear at 128,520 seconds and

continues to increase in size. The deviations once again could be contributed to the model not

simulating gravity harmonics and accumulating truncation errors. Also, since the plotted LADEE

trajectory is considered actual data, it is highly likely that other perturbations like point masses,

drag forces, and solar radiation pressure are playing a significant role in its trajectory. The N-

Body model in this paper does not include the mentioned perturbations. A summary of the

calculated differences is found in Table 5.3.

Figure 5.5 LADEE Trajectory – (a) Comparison of ODE45 and RK Solutions, (b) ODE45

Solution, (c) RK Solution

29

Figure 5.6 LADEE Trajectory – Comparison of ODE45, RK and LADEE

Table 5.3 LADEE Trajectory - Summary of Differences for ODE45 and RK Solutions against

LADEE

Maximum

Difference (km) Time (s)
Mean Difference

(km)
Mean Percent
Difference (%)

ODE45 vs RK 0.066539333 413940 -0.0381 0.000015153

ODE45 vs LADEE 15973.19946 413940 -3577 1.3752

RK vs LADEE 15973.266 413940 -3577.1 1.3752

5.2.2 GMAT Results for LADEE Trajectory Case

The GMAT simulation for the LADEE mission is shown in Figure 5.7. To compare the

results of GMAT to ODE45 and Fixed-Step RK, GMAT data was read into MATLAB (shown in

Figure 5.8).

30

Figure 5.7 LADEE Trajectory – GMAT Solution

Figure 5.8 LADEE Trajectory – GMAT Solution Plotted in MATLAB

31

5.2.3 MATLAB and GMAT Comparisons for LADEE Trajectory Case

Comparisons of the Fixed-Step RK function and the ODE45 solver against GMAT is

shown in Figure 5.9. All the solutions are also compared to the LADEE SPICE data in Figure

5.9. Compared to the SPICE data for LADEE, the GMAT solution is closer to the ODE45 and

Fixed-Step RK solutions. Deviations between GMAT and the ODE45/Fixed-Step RK solver can

once again be attributed to gravity harmonic calculations in GMAT and rounding errors. The

difference between GMAT and SPICE LADEE trajectory could be attributed to the other force

models that were not included in the GMAT computations. A summary of differences can be

found in Table 5.4.

Figure 5.9 LADEE Trajectory – Comparison of All Solutions

32

Table 5.4 LADEE Trajectory - Summary of Differences for ODE45,RK and LADEE against

GMAT

Maximum

Difference (km) Time (s)
Mean Difference

(km)
Mean Percent
Difference (%)

ODE45 vs GMAT 1512.149932 413940 -638.7883 0.2523

RK vs GMAT 1512.083392 413940 -638.7502 0.2523

GMAT vs LADEE 17485.34939 413940 -4215.8 1.6004

33

6.0 SUMMARY

 In this paper, a code to simulate spacecraft trajectories using a high-fidelity model proved

successful. Simulations of both a circular orbit and the beginning trajectory of the LADEE

mission was achieved. However, comparisons of the MATLAB solutions to GMAT showed that

the N-Body model without other perturbations (drag forces, gravity harmonics, point masses) is

subject to output less accurate trajectories. Additionally, accumulating rounding errors may also

be a cause for deviating trajectories. Future work to modify the tool from this paper are

considered in the next section.

6.1 Future Work

 GMAT provided insight to other force models that should be considered to find more

accurate trajectories. For example, in GMAT, adding the point masses of the Sun and the Moon

into the simulation made a significant change in the GMAT solution. The resulting GMAT

trajectory closely resembled the actual LADEE trajectory from SPICE data.

 The paper also simulates a portion of the LADEE mission before the first maneuver.

Thrust equations are not modeled so initial conditions after the maneuvers must be taken to

continue propagating the solution. This causes unrealistic discontinuities in the orbit. Thus,

future work for the MATLAB code can be to include computations for other perturbations as

well as orbital maneuvers.

Other work considered is to test different numerical integrators other than the RK methods

used in this investigation. Looking into minimizing or correcting truncation errors may also be of

interest. Use of other programming languages other than MATLAB can also be valuable if the

solvers show slowness in computation times.

34

References

1. Bate, R., Mueller, D., White,J.,Fundamentals of Astrodynamics, Dover Publications,1971.

2. Roy, A.E., Orbital Motion, Taylor & Francis Group, 2005.

3. Hsiao, R., Wang, T., Lee, C., Yang, P., Wei, H., Tsai, P., ‘Trajectory of spacecraft with

photonic laser propulsion in the two-body problem’, Acta Astronautica, vol. 84, 2013, p.

215-226. https://doi.org/10.1016/j.actaastro.2012.11.006

4. Szebehely, V., The Theory of Orbits, Academic Press, 1967.

5. Pavlak, T. A., ‘Trajectory design and orbit maintenance strategies in multi-body dynamical

regimes’, Purdue University, 2013. Retrieved from

http://search.proquest.com.libaccess.sjlibrary.org/docview/1435646690?accountid=10361

6. Brick, J, and Air Force Institute Of Technology Wright-Patterson Afb Oh Wright-Patterson

Afb United States. Military Space Mission Design and Analysis in a Multi-Body

Environment: An Investigation of High-Altitude Orbits as Alternative Transfer Paths,

Parking Orbits for Reconstitution, and Unconventional Mission Orbits, 2017.

7. Tantardini, M., Fantino, E., Ren, Y., Pergola, P., Gomez, G., Masdemont, J. J., ‘Spacecraft

trajectories to the L3 point of the Sun–Earth three-body problem’ Celestial Mechanics and

Dynamical Astronomy, vol. 108, 2010, p. 215–232. https://doi-

org.libaccess.sjlibrary.org/10.1007/s10569-010-9299-x

8. Bombardelli, C., Bernal Mencía, P., ‘The circular restricted three-body problem in

curvilinear coordinates’ Celestial Mechanics and Dynamical Astronomy, vol. 130(11), 2018,

p. 1-16. https://doi-org.libaccess.sjlibrary.org/10.1007/s10569-018-9870-4

9. Capdevila, L., ‘AE 243 Advanced Astrodynamics, CR3BP EOMs and Jacobi Integral’, San

Jose State University, 2019.

10. Wilmer, M, and Air Force Institute Of Technology Wright-Patterson Afb Oh Wright-

Patterson Afb United States. Military Applications of High-Altitude Satellite Orbits in a

Multi-Body Dynamical Environment Using Numerical Methods and Dynamical Systems

Theory, 2016.

11. Ode45, MathWorks, URL: <https://www.mathworks.com/help/matlab/ref/ode45.html>,

retrieved March 28, 2020.

12. Dormand, J.R., Prince, P.J., ‘A family of embedded Runge-Kutta formulae’, Journal of

Computational and Applied Mathematics, vol. 6, 1980, p. 19-26.

https://doi.org/10.1016/0771-050X(80)90013-3

13. Fourth-Order Runge-Kutta, Eric Cheever – Swarthmore College, URL:

<https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html>, retrieved April 2020.

14. Martini, Michael C., and James R. Scott. “High Speed Solution of Spacecraft Trajectory

Problems Using Taylor Series Integration - NASA/TM-2008-215439.” Astrodynamics

Specialist Conference and Exhibit, no. ulu, hi, 2008, pp. Astrodynamics Specialist

Conference and Exhibit; 18–21 Aug. 2008; Honolulu, HI; United States.

15. Zhang, H., Li, Y. & Zhang, K., ‘A novel method of periodic orbit computation in circular

restricted three-body problem’ Sci. China Technol. Sci. vol. 54, 2011, p. 2197–2203.

https://doi-org.libaccess.sjlibrary.org/10.1007/s11431-011-4441-x

16. Erwin, R, et al. Spacecraft Trajectory Estimation Using a Sampled-Data Extended Kalman

Filter with Range-Only Measurements, 2005.

https://doi.org/10.1016/j.actaastro.2012.11.006
http://search.proquest.com.libaccess.sjlibrary.org/docview/1435646690?accountid=10361
https://doi-org.libaccess.sjlibrary.org/10.1007/s10569-010-9299-x
https://doi-org.libaccess.sjlibrary.org/10.1007/s10569-010-9299-x
https://doi-org.libaccess.sjlibrary.org/10.1007/s10569-018-9870-4
https://www.mathworks.com/help/matlab/ref/ode45.html
https://doi.org/10.1016/0771-050X(80)90013-3
https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html
https://doi-org.libaccess.sjlibrary.org/10.1007/s11431-011-4441-x

35

17. Acton, C.H.; "Ancillary Data Services of NASA's Navigation and Ancillary Information

Facility;" Planetary and Space Science, Vol. 44, No. 1, pp. 65-70, 1996.

18. HORIZONS User Manual, NASA Jet Propulsion Laboratory, URL:

<https://ssd.jpl.nasa.gov/?horizons_doc#intro>, retrieved March 2020.

19. LADEE Kernels, Planetary Data System, NAIF, URL:

<https://naif.jpl.nasa.gov/pub/naif/LADEE/kernels/spk/>, retrieved March 2020.

20. Policastri, L., ‘Lunar Atmosphere & Dust Environment Explorer Phasing SPK file’,

LADEE/AMES, 2014.

21. Policastri, L., ‘Lunar Atmosphere & Dust Environment Explorer LOA SPK file’,

LADEE/AMES, 2014.

22. Policastri, L., ‘Lunar Atmosphere & Dust Environment Explorer SCI SPK file’,

LADEE/AMES, 2014.

23. ‘LADEE Post-Impact Location SPK’, BVS/NAIF, 2014.

24. Kam, A., Plice, L., Galal, K., Hawkins, A., Policastri, L., Loucks, M., Nickel, C., Lebois, R.,

Sherman, R., Carrico, J., ‘LADEE FLIGHT DYNAMICS: OVERVIEW OF MISSION

DESIGN AND OPERATIONS’, 2015 AAS-AIAA Space Flight Mechanics Meeting, January

2015.

25. NASA Technology Transfer Program, General Mission Analysis Tool [GMAT V. R2016a],

Goddard Space Flight Center.

26. Propagator, General Mission Analysis Tool Documentation, URL:

<https://documentation.help/GMAT/Propagator.html#Propagator_ForceModel>, retrieved

April 2020.

https://ssd.jpl.nasa.gov/?horizons_doc#intro
https://naif.jpl.nasa.gov/pub/naif/LADEE/kernels/spk/
https://documentation.help/GMAT/Propagator.html#Propagator_ForceModel

36

Appendix A. SPICE/MICE Functions

A list of SPICE/MICE functions used when building the code in MATLAB [17]:

• cspice_furnsh - function to load SPICE kernels into the MATLAB session.

• cspice_unload/cspice_kclear – functions that unload SPICE kernels (typically done at the

end of the program) to avoid incorrect results if running multiple programs using SPICE

data.

• cspice_str2et – function to convert time string inputs (e.g. 2013-09-07 03:28:00 TDB)

into ephemeris time (ephemeris seconds past January 1, 2000 12:00:00 or J2000).

• cspice_spkpos – function to retrieve position vectors given a specific target, time,

reference frame, and observer.

• cspice_spkezr – function to retrieve state vectors given a specific target, time, reference

frame, and observer.

37

Appendix B. MATLAB Function File for N-Body Equations of Motion

%% N-Body Function
% Romalyn Mirador

%% Rewrite 2nd order to 1st order ODEs
% r(1) = x (x position of spacecraft)
% r(2) = y (y position of spacecraft)
% r(3) = z (z position of spacecraft)
% r(4) = xdot (x velocity of spacecraft)
% r(5) = ydot (y velocity of spacecraft)
% r(6) = zdot (z velocity of spacecraft)

% rdot(1) = xdot (x velocity of spacecraft)
% rdot(2) = ydot (y velocity of spacecraft)
% rdot(3) = zdot (z velocity of spacecraft)
% rdot(4) = xdotdot (x acceleration of spacecraft)
% rdot(5) = ydotdot (y acceleration of spacecraft)
% rdot(6) = zdotdot (z acceleration of spacecraft)

function rdot = nbody_func(t,r)
G = 6.6743015* 10^-20; % universal gravitational constant; units: km^3/kg s^2
m_sc_i = 383; % mi = mass of spacecraft LADEE in kg
m_earth_q = 5.97219*10^24; % mq = mass of Central Body(Earth) = 5.97219 x

10^24 kg
m_moon_1 = 7.34767*10^22; % mj1 = mass of Primary 1 (Moon) = 7.34767 x 10^22

kg
m_sun_2 = 1.989*10^30; % mj2 = mass of Primary 2 (Sun) = 1.989 x 10^30 kg

% Call for Ephmerides for Earth, Moon, Sun with SPICE
% Position for Moon relative to Earth: rqj1 and Position for Sun relative to

Earth: rqj2
% Define targets and observer for Moon and Sun
target1 = 'MOON';
target2 = 'SUN';
observer = 'EARTH';
frame = 'J2000'; %Reference Frame: ICRF/J2000; Coordinate systm: Ecliptic and

Mean Equinox of Reference Epoch

[pos_moon,ltime]=cspice_spkpos(target1,t,frame,'NONE',observer);
r_moon_x=pos_moon(1,:);
r_moon_y=pos_moon(2,:);
r_moon_z=pos_moon(3,:);

[pos_sun,ltime]=cspice_spkpos(target2,t,frame,'NONE',observer);
r_sun_x=pos_sun(1,:);
r_sun_y=pos_sun(2,:);
r_sun_z=pos_sun(3,:);

% Magnitudes
riq_sc2earth = sqrt((r(1)^2)+(r(2)^2)+(r(3)^2)); % magnitude of position of

spacecraft relative to Earth
rqj1_moon = sqrt((r_moon_x^2)+(r_moon_y^2)+(r_moon_z^2)); % magnitude of

position of Moon relative to Earth

38

rqj2_sun = sqrt((r_sun_x^2)+(r_sun_y^2)+(r_sun_z^2)); % magnitude of position

of Sun relative to Earth

% Equations of Motion
rdot(1) = r(4);
rdot(2) = r(5);
rdot(3) = r(6);
rdot(4) = (-

G*(m_sc_i+m_earth_q)*(r(1)/riq_sc2earth^3))+(G*m_moon_1*(((r(1)+r_moon_x)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_x/rqj1_moon^3)))+(G*m_sun_2*(((r(1)+r_sun_x)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_x/rqj2_sun^3)));
rdot(5) = (-

G*(m_sc_i+m_earth_q)*(r(2)/riq_sc2earth^3))+(G*m_moon_1*(((r(2)+r_moon_y)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_y/rqj1_moon^3)))+(G*m_sun_2*(((r(2)+r_sun_y)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_y/rqj2_sun^3)));
rdot(6) = (-

G*(m_sc_i+m_earth_q)*(r(3)/riq_sc2earth^3))+(G*m_moon_1*(((r(3)+r_moon_z)/((r

iq_sc2earth+rqj1_moon)^3))-

(r_moon_z/rqj1_moon^3)))+(G*m_sun_2*(((r(3)+r_sun_z)/((riq_sc2earth+rqj2_sun)

^3))-(r_sun_z/rqj2_sun^3)));

rdot = rdot';

return

39

Appendix C. MATLAB Function File for Fixed-Step Runge-Kutta Method

%% Runge-Kutta 4 Fixed-Step Method
% Romalyn Mirador

function [t,r] = rk(h,t0,tf,r0)

n = (tf-t0)/h; % n = number of equal divisions in interval [t0,tf] where h is

step-size

%initialize vectors
t = zeros(n,1);
t(1) = t0;
r = zeros(n,6);
r(1,:) = r0';

 for i = 1:n-1
 rprime = nbody_func(h*i,r0);
 k1 = h*rprime;

 rprime = nbody_func(h*i+h/2,r0+k1/2);
 k2 = h*rprime;

 rprime = nbody_func(h*i+h/2,r0+k2/2);
 k3 = h*rprime;

 rprime = nbody_func(h*i+h,r0+k3);
 k4 = h*rprime;

 r(i+1,:) = r(i,:)+((k1/6)+(k2/3)+(k3/3)+(k4/6))';
 t(i+1) = t(i)+h;
 r0 = r(i+1,:)';
 end
end

40

Appendix D. MATLAB Script for N-Body Trajectories, Plots and

Comparisons

%% MASTER'S PROJECT
% Numerically integrate the n-body model using fixed-step RK4, ode45,
% and given the ephemerides of Earth, Moon and Sun from JPL's SPICE.
% Compare solutions with GMAT
% Author: Romalyn Mirador

clear; close all; clc;

%% Load Kernels Paths
cspice_furnsh({'sckernel.tm',

'D:\MATLAB2019\kernels\ladee\spk\ladee_r_13250_13279_pha_v01.bsp'});

%% Set up/ Initial Conditions for LADEE
et = cspice_str2et({'2013-09-07 04:00:00 TDB', '2013-09-11 23:00:00 TDB'});

%convert string to ephemeris time in seconds past J2000 (J2000=2000 Jan 1

12:00:00 TDB)
t0 = 0; %initial ephemeris time in seconds past J2000 (J2000=2000 Jan 1

12:00:00 TDB)
tf = et(2)-et(1); %final ephemeris time in seconds past J2000 (J2000=2000 Jan

1 12:00:00 TDB)
ti = [t0,tf];%time interval

time_elapsed = et(2) - et(1);

step_size = 60; % seconds; 60 second intervals (h)
div = (tf-t0)/step_size;
times = (0:div-1)*step_size; % create an array of div times for a given

step_size starting at 0 seconds
times_in_et = times + et(1); % times in actual ephemeris time

% Initial Conditions for circular orbit
rad_Earth=6378.14; % Earth radius in km
mu = 3.98600*10^5; %Gravitational parameter; km^3/s^2

r_cir(1) = 35786+rad_Earth; % initial x position of spacecraft
r_cir(2) = 0; % initial y position of spacecraft
r_cir(3) = 0; % initial z position of spacecraft
r_cir(4) = 0; % initial x velocity of spacecraft
r_cir(5) = sqrt(mu/r_cir(1)); % initial y velocity of spacecraft
r_cir(6) = 0; % initial z velocity of spacecraft

r0_cir = [r_cir(1); r_cir(2); r_cir(3); r_cir(4); r_cir(5); r_cir(6)]; %

Column vector for initial conditions

% Define targets and observer for LADEE spacecraft comparison
target = 'LADEE';
observer = 'EARTH';
frame = 'J2000'; %Reference Frame: ICRF/J2000; Reference plane/Coordinate

system: Earth mean equator and equinox of reference epoch

41

[state,ltime]=cspice_spkezr(target,times_in_et,frame,'NONE',observer); %

finding the state using SPICE

% Positions and Velocities of LADEE from SPICE
x = state(1,:); % LADEE x position
y = state(2,:); % LADEE y position
z = state(3,:); % LADEE z position
xv = state(4,:); % LADEE x velocity
yv = state(5,:); % LADEE y velocity
zv = state(6,:); % LADEE z velocity

% Initial Conditions of LADEE from SPICE at time, t0
r(1) = x(1); % initial x position of spacecraft
r(2) = y(1); % initial y position of spacecraft
r(3) = z(1); % initial z position of spacecraft
r(4) = xv(1); % initial x velocity of spacecraft
r(5) = yv(1); % initial y velocity of spacecraft
r(6) = zv(1); % initial z velocity of spacecraft

r0 = [r(1); r(2); r(3); r(4); r(5); r(6)]; % Column vector for initial

conditions

%% Call in RK fixed-step (with nbody) function
% Circular Orbit
[t_rk_cir,r_rk_cir]=rk4_fixed(step_size,t0,tf,r0_cir);

x_rk_cir = r_rk_cir(:,1); % x position of spacecraft - RK Fixed-Step Solution
y_rk_cir = r_rk_cir(:,2); % y position of spacecraft - RK Fixed-Step Solution
z_rk_cir = r_rk_cir(:,3); % z position of spacecraft - RK Fixed-Step Solution
xv_rk_cir = r_rk_cir(:,4); % x velocity of spacecraft - RK Fixed-Step

Solution
yv_rk_cir = r_rk_cir(:,5); % y velocity of spacecraft - RK Fixed-Step

Solution
zv_rk_cir = r_rk_cir(:,6); % z velocity of spacecraft - RK Fixed-Step

Solution

% LADEE Trajectory
[t_rk,r_rk]=rk4_fixed(step_size,t0,tf,r0);

x_rk = r_rk(:,1); % x position of spacecraft - RK Fixed-Step Solution
y_rk = r_rk(:,2); % y position of spacecraft - RK Fixed-Step Solution
z_rk = r_rk(:,3); % z position of spacecraft - RK Fixed-Step Solution
xv_rk = r_rk(:,4); % x velocity of spacecraft - RK Fixed-Step Solution
yv_rk = r_rk(:,5); % y velocity of spacecraft - RK Fixed-Step Solution
zv_rk = r_rk(:,6); % z velocity of spacecraft - RK Fixed-Step Solution

%% Call nbody with ODE45
% Integration tolerances for ODE 45
ode_opt = odeset('AbsTol', 1e-12, 'RelTol', 1e-12);

% Time from GMAT
filename_time = 'gmat_time.txt';
A_time = importdata(filename_time);

42

t_gmat = A_time(:,1);

% Circular Orbit
[t_ode45_cir,r_ode45_cir] = ode45(@nbody_func, t_gmat, r0_cir, ode_opt); %

variable time-step

x_ode45_cir = r_ode45_cir(:,1); % calculated x position of spacecraft
y_ode45_cir = r_ode45_cir(:,2); % calculated y position of spacecraft
z_ode45_cir = r_ode45_cir(:,3); % calculated z position of spacecraft
xv_ode45_cir = r_ode45_cir(:,4); % calculated x velocity of spacecraft
yv_ode45_cir = r_ode45_cir(:,5); % calculated y velocity of spacecraft
zv_ode45_cir = r_ode45_cir(:,6); % calculated z velocity of spacecraft

% LADEE Trajectory
[t_ode45,r_ode45] = ode45(@nbody_func, t_gmat, r0, ode_opt); % variable time-

step

x_ode45 = r_ode45(:,1); % calculated x position of spacecraft
y_ode45 = r_ode45(:,2); % calculated y position of spacecraft
z_ode45 = r_ode45(:,3); % calculated z position of spacecraft
xv_ode45 = r_ode45(:,4); % calculated x velocity of spacecraft
yv_ode45 = r_ode45(:,5); % calculated y velocity of spacecraft
zv_ode45 = r_ode45(:,6); % calculated z velocity of spacecraft

%% Circular Orbit - Calculate mean difference and mean percent difference

mag_rk_cir = sqrt((x_rk_cir.^2) + (y_rk_cir.^2) + (z_rk_cir.^2)); % calculate

the position magnitude fixed-step rk4
mag_ode45_cir = sqrt((x_ode45_cir.^2) + (y_ode45_cir.^2) + (z_ode45_cir.^2));

% calculate the position magnitude ode45

% compare rk4 to ode45
mag_diff_rk_ode45_cir = mag_rk_cir - mag_ode45_cir;
mag_ave_rk_ode45_cir = (mag_rk_cir + mag_ode45_cir)/2;
mag_perdiff_rk_ode45_cir =

(abs((mag_diff_rk_ode45_cir./mag_ave_rk_ode45_cir)))*100;
mag_meandiff_rk_ode45_cir = mean(mag_diff_rk_ode45_cir)
mag_meanperdiff_rk_ode45_cir = mean(mag_perdiff_rk_ode45_cir)

%% Circular Orbit - Comparison to GMAT

% Read in gmat results
filename_cir = 'gmat_xyz_2bp.txt';
delimiterIn_cir = ' ';
A_cir = importdata(filename_cir, delimiterIn_cir);

x_pos_cir = A_cir(:,1);
y_pos_cir = A_cir(:,2);
z_pos_cir = A_cir(:,3);

mag_gmat_cir = sqrt((x_pos_cir.^2)+(y_pos_cir.^2)+(z_pos_cir.^2)); %calculate

position magnitude gmat

43

%compare rk4 to gmat
mag_diff_gmat_rk_cir = mag_gmat_cir - mag_rk_cir;
mag_ave_gmat_rk_cir = (mag_gmat_cir + mag_rk_cir)/2;
mag_perdiff_gmat_rk_cir =

(abs((mag_diff_gmat_rk_cir./mag_ave_gmat_rk_cir)))*100;
mag_meandiff_gmat_rk_cir = mean(mag_diff_gmat_rk_cir)
mag_meanperdiff_gmat_rk_cir = mean(mag_perdiff_gmat_rk_cir)

%compare ode45 to gmat
mag_diff_gmat_ode45_cir = mag_gmat_cir - mag_ode45_cir;
mag_ave_gmat_ode45_cir = (mag_gmat_cir + mag_ode45_cir)/2;
mag_perdiff_gmat_ode45_cir =

(abs((mag_diff_gmat_ode45_cir./mag_ave_gmat_ode45_cir)))*100;
mag_meandiff_gmat_ode45_cir = mean(mag_diff_gmat_ode45_cir)
mag_meanperdiff_gmat_ode45_cir = mean(mag_perdiff_gmat_ode45_cir)

%% LADEE - Calculate percent difference and percent error

mag_rk = sqrt((x_rk.^2) + (y_rk.^2) + (z_rk.^2)); % calculate the position

magnitude fixed-step rk4
mag_ode45 = sqrt((x_ode45.^2) + (y_ode45.^2) + (z_ode45.^2)); % calculate the

position magnitude ode45
mag_LADEE = sqrt((x.^2) + (y.^2) + (z.^2)); %calculate the position magnitude

LADEE

% compare rk4 to LADEE
mag_diff_rk_LADEE = mag_rk - mag_LADEE';
mag_ave_rk_LADEE = (mag_rk + mag_LADEE')/2;
mag_perdiff_rk_LADEE = (abs((mag_diff_rk_LADEE./mag_ave_rk_LADEE)))*100;
%mag_pererr_rk_LADEE = (abs(mag_diff_rk_LADEE)./abs(mag_LADEE'))*100;
mag_meandiff_rk_LADEE = mean(mag_diff_rk_LADEE)
mag_meanperdiff_rk_LADEE = mean(mag_perdiff_rk_LADEE)

% compare rk4 to ode45
mag_diff_rk_ode45 = mag_rk - mag_ode45;
mag_ave_rk_ode45 = (mag_rk + mag_ode45)/2;
mag_perdiff_rk_ode45 = (abs((mag_diff_rk_ode45./mag_ave_rk_ode45)))*100;
mag_meandiff_rk_ode45 = mean(mag_diff_rk_ode45)
mag_meanperdiff_rk_ode45 = mean(mag_perdiff_rk_ode45)

% compare ode45 to LADEE
mag_diff_ode45_LADEE = mag_ode45 - mag_LADEE';
mag_ave_ode45_LADEE = (mag_ode45 + mag_LADEE')/2;
mag_perdiff_ode45_LADEE =

(abs((mag_diff_ode45_LADEE./mag_ave_ode45_LADEE)))*100;
%mag_pererr_ode45_LADEE = (abs(mag_diff_ode45_LADEE)./abs(mag_LADEE'))*100;
mag_meandiff_ode45_LADEE = mean(mag_diff_ode45_LADEE)
mag_meanperdiff_ode45_LADEE = mean(mag_perdiff_ode45_LADEE)

%% LADEE - Comparison to GMAT

% Read in gmat results
filename = 'gmat_xyz.txt';

44

delimiterIn = ' ';
A = importdata(filename, delimiterIn);

x_pos = A(:,1);
y_pos = A(:,2);
z_pos = A(:,3);

mag_gmat = sqrt((x_pos.^2)+(y_pos.^2)+(z_pos.^2)); %calculate position

magnitude gmat

%compare rk4 to gmat
mag_diff_gmat_rk = mag_gmat - mag_rk;
mag_ave_gmat_rk = (mag_gmat + mag_rk)/2;
mag_perdiff_gmat_rk = (abs((mag_diff_gmat_rk./mag_ave_gmat_rk)))*100;
mag_meandiff_gmat_rk = mean(mag_diff_gmat_rk)
mag_meanperdiff_gmat_rk = mean(mag_perdiff_gmat_rk)

%compare ode45 to gmat
mag_diff_gmat_ode45 = mag_gmat - mag_ode45;
mag_ave_gmat_ode45 = (mag_gmat + mag_ode45)/2;
mag_perdiff_gmat_ode45 =

(abs((mag_diff_gmat_ode45./mag_ave_gmat_ode45)))*100;
mag_meandiff_gmat_ode45 = mean(mag_diff_gmat_ode45)
mag_meanperdiff_gmat_ode45 = mean(mag_perdiff_gmat_ode45)

%compare LADEE to gmat
mag_diff_gmat_LADEE = mag_gmat - mag_LADEE';
mag_ave_gmat_LADEE = (mag_gmat + mag_LADEE')/2;
mag_perdiff_gmat_LADEE =

(abs((mag_diff_gmat_LADEE./mag_ave_gmat_LADEE)))*100;
mag_meandiff_gmat_LADEE = mean(mag_diff_gmat_LADEE)
mag_meanperdiff_gmat_LADEE = mean(mag_perdiff_gmat_LADEE)
%% Plot trajectories

% Circular orbit plots
figure(1) %Subplots of ODE45 and RK and comparisons between the two
subplot(2,2,[1,2])
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45

trajectory
hold on
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory
title ({'Circular Orbit';'2013-09-07 04:00:00 to 2013-09-11 23:00:00 - ICRF';

'(a)Comparison ODE45 and RK'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution

- Fixed-Step RK')
axis equal

45

subplot(2,2,3)
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45

trajectory
title ({'(b)ODE45'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
axis equal

subplot(2,2,4)
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory
title ({'(c)Fixed-Step RK'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
axis equal

figure(2) %GMAT Replotted
plot3(x_pos_cir,y_pos_cir,z_pos_cir,'k-.') % plot GMAT results
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
title ({'Circular Orbit'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; 'GMAT Solution'})
axis equal

figure(3) %Comparisons to GMAT
plot3(x_ode45_cir, y_ode45_cir, z_ode45_cir,'b:') % plot nbody ODE45

trajectory
hold on
plot3(x_rk_cir, y_rk_cir, z_rk_cir,'g') % plot nbody fixed rk trajectory
hold on
plot3(x_pos_cir,y_pos_cir,z_pos_cir,'k-.') % plot GMAT results
title ({'Circular Orbit'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; 'All Solutions Comparison'})
hold on
[x_s,y_s,z_s] = sphere();

46

surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution

- Fixed-Step RK','\color{black} GMAT')
axis equal

% LADEE trajectory plots
figure(4) %Subplots of ODE45 and RK and comparisons between the two
subplot(2,2,[1,2])
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory
hold on
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; '(a)Comparison ODE45 and RK'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution

- Fixed-Step RK')
axis equal

subplot(2,2,3)
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory
title ({'(b)ODE45'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
axis equal

subplot(2,2,4)
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory
title ({'(c)Fixed-Step RK'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
axis equal

47

figure(5) %LADEE Comparison to ODE45 and RK
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory
hold on
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory
hold on
plot3(x,y,z,'r--') % plot LADEE trajectory
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; 'Comparing to SPICE Data'})
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution

- Fixed-Step RK','\color{red} SPICE LADEE Trajectory')
axis equal

figure(6) %GMAT Replotted
plot3(x_pos,y_pos,z_pos,'k-.') % plot GMAT results
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; 'GMAT Solution'})
axis equal

figure(7) %Comparisons to GMAT
plot3(x_ode45, y_ode45, z_ode45,'b:') % plot nbody ODE45 trajectory
hold on
plot3(x_rk, y_rk, z_rk,'g') % plot nbody fixed rk trajectory
hold on
plot3(x_pos,y_pos,z_pos,'k-.') % plot GMAT results
hold on
plot3(x,y,z,'r--') % plot LADEE trajectory
title ({'LADEE Trajectory'; '2013-09-07 04:00:00 to 2013-09-11 23:00:00 -

ICRF'; 'All Solutions Comparison'})
hold on
[x_s,y_s,z_s] = sphere();
surf(rad_Earth*x_s, rad_Earth*y_s, rad_Earth*z_s) % sphere with radius

rad_Earth centred at (0,0,0)
hold on
xlabel 'x position (km)'
ylabel 'y position (km)'
zlabel 'z position (km)'
legend('\color{blue} N-Body Solution - ODE45','\color{green} N-Body Solution

- Fixed-Step RK','\color{black} GMAT','\color{red} SPICE LADEE Trajectory')

48

axis equal
%% Unload Kernels
cspice_kclear

