
BASIC Stamp Programming Manual
Version 1.8

®

®

This manual is valid with the following software and firmware versions:

BASIC Stamp I:
STAMP.EXE software version 2.0
Firmware version 1.4

BASIC Stamp II:
STAMP2.EXE software version 1.1
Firmware version 1.0

Newer versions will usually work, but older versions may not. New software can be obtained for free on our BBS
and Internet web and ftp site. New firmware, however, must usually be purchased in the form of a new BASIC
Stamp. If you have any questions about what you may need, please contact Parallax.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 1

Thank you for purchasing a BASIC Stamp product. We’ve been making
BASIC Stamp computers for years, and most customers find them
useful and fun. Of course, we hope your experience with BASIC Stamps
will be useful and fun, as well. If you have any questions or need
technical assistance, please don’t hesitate to contact Parallax or the
distributor from which you purchased your BASIC Stamps.

This manual is divided into two sections. The first section deals with the
BASIC Stamp I, and the second section deals with the BASIC Stamp II.
The BASIC Stamp I has been around for some time, and therefore has
more data in the way of application notes. If you have prior experience
with BASIC Stamp I, you should consult Appendix C, for details on
converting to the Basic Stamp II.

PBASIC Language: the BASIC Stamps are programmed in a simple
version of the BASIC language, called PBASIC. We developed PBASIC
to be easy to understand, yet well-suited for the many control and
monitoring applications that BASIC Stamps are used in. The PBASIC
language includes familiar instructions, such as GOTO, FOR...NEXT,
and IF...THEN, as well as specialized instructions, such as SERIN,
PWM, BUTTON, COUNT, and DTMFOUT.

Hardware: the BASIC Stamps discussed in this manual are the “BS1-IC”
and “BS2-IC.” Both represent the latest versions of the BASIC Stamp I
and BASIC Stamp II. Both include a small circuit board with a PBASIC
interpreter chip, EEPROM, 5-volt regulator, reset circuit, and resonator.
These five components form a complete computer in a very small space.
The modular design of the BS1-IC and BS2-IC makes them perfect for
use in breadboards and printed circuit boards.

Each of the BASIC Stamp modules has a corresponding “carrier board.”
The carrier boards provide 9-volt battery clips, connectors for program-
ming, and a small prototyping area. Although they are optional, we
recommend that you purchase at least one carrier board as a means of
easily programming your BASIC Stamps.

Introduction

Page 2 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Warranty
Parallax warrants its products against defects in materials and workmanship for a period
of 90 days. If you discover a defect, Parallax will, at its option, repair, replace, or refund
the purchase price. Simply return the product with a description of the problem and a
copy of your invoice (if you do not have your invoice, please include your name and
telephone number). We will return your product, or its replacement, using the same
shipping method used to ship the product to Parallax (for instance, if you ship your
product via overnight express, we will do the same).

This warranty does not apply if the product has been modified or damaged by accident,
abuse, or misuse.

14-Day Money-Back Guarantee
If, within 14 days of having received your product, you find that it does not suit your
needs, you may return it for a refund. Parallax will refund the purchase price of the
product, excluding shipping/handling costs. This does not apply if the product has been
altered or damaged.

Copyrights and Trademarks
Copyright © 1997 by Parallax, Inc. All rights reserved. PBASIC is a trademark and
Parallax, the Parallax logo, and BASIC Stamp are registered trademarks of Parallax, Inc.
PIC is a registered trademark of Microchip Technology, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability
Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting
from any breach of warranty, or under any legal theory, including lost profits, downtime,
goodwill, damage to or replacement of equipment or property, and any costs or recover-
ing, reprogramming, or reproducing any data stored in or used with Parallax products.

BBS/Internet Access
We maintain BBS and Internet systems for your convenience. These may be used to obtain
software, communicate with members of Parallax, and communicate with other custom-
ers. Access information is shown below:

E-mail: info@parallaxinc.com
Ftp: ftp.parallaxinc.com (same file selection as BBS)
Web: http://www.parallaxinc.com
BBS: (916) 624-7101 (300-14400 baud, 8 data bits, 1 stop bit, no parity)

Internet BASIC Stamp Discussion List
We maintain an email discussion list for people interested in BASIC Stamps. The list
works like this: lots of people subscribe to the list, and then all questions and answers to
the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss issues.

To subscribe to the Stamp list, send email to majordomo@parallaxinc.com and write
subscribe stamps in the body of the message.

Important Information

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 3

BASIC Stamp I:
Programming ... 7

System requirements ...7
Packing list ..7
Connecting to the PC ...8

Hardware ..9
BS1-IC pin-out ...9
Carrier board features ...9
General BASIC Stamp schematic ...10
Regulator current limits ..10

I/O Port & Variable Space .. 11

Common Questions .. 13
Example Application... 15
Using the Editor .. 16

Starting the editor ...16
Program formatting ...16
Entering and editing programs ..20
Editor function keys ...20
Running your program ...22
Loading a program from disk ..22
Saving a program on disk ...22
Using cut, copy, and paste ..23
Using search and replace ..23

Instruction Set Summary .. 25
PBASIC Instructions ... 27

BRANCH ...27
BUTTON ..28
DEBUG...30
EEPROM ..31
END ..32
FOR...NEXT ...33
GOSUB ...35
GOTO ...36
HIGH ..37
IF...THEN...38
INPUT ..39
LET ...40
LOOKDOWN ...42
LOOKUP..43

Contents

Page 4 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Contents

LOW ...44
NAP ..45
OUTPUT ..47
PAUSE..48
POT ...49
PULSIN ..51
PULSOUT ..52
PWM ..53
RANDOM..55
READ ...56
RETURN ..57
REVERSE ...58
SERIN ...59
SEROUT ...63
SLEEP ...66
SOUND ..67
TOGGLE ..68
WRITE ..69

BASIC Stamp I Application Notes .. 71
Note #1: LCD user-interface terminal71
Note #2: Interfacing an 8-bit A/D convertor77
Note #3: Hardware solution for keypads81
Note #4: Controlling and testing servos85
Note #5: Practical pulse measurements91
Note #6: A serial stepper-motor controller99
Note #7: Using a thermistor ...103
Note #8: Sending Morse code ..109
Note #9: Constructing a dice game113
Note #10: Humidity and temperature115
Note #11: Infrared communication119
Note #12: Sonar rangefinding ..123
Note #13: Using serial EEPROMs129
Note #14: Networking multiple Stamps135
Note #15: Using PWM for analog output141
Note #16: Keeping Stamp programs private145
Note #17: Solar-powered Stamp ..149
Note #18: One pin, many switches155
Note #19: Using the button instruction effectively159
Note #20: An accurate timebase ..167
Note #21: Fun with model trains ...171
Note #22: Interfacing a 12-bit A/D convertor183
Note #23: Interfacing the DS1620 digital thermometer ...189

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 5

BASIC Stamp II:
Programming .. 198

System requirements ...198
Packing list ..198
Connecting to the PC ...199

Carrier Board Features ... 199
BS2-IC Pinout .. 200

Using the Editor ... 201
Starting the editor ...201
Entering and editing programs ..202
Editor function keys ...202

PBASIC Instruction Summary .. 204
BS2 Hardware .. 207

Schematic ...207
PBASIC2 Interpreter Chip...208
Erasable Memory Chip ..209
Reset Circuit ..209
Power Supply ..210
Serial Interface ..210
PC-TO-BS2 Connector Hookup ...212

Writing programs for the BASIC Stamp II 213
BS2 Memory Organization..213
Defining variables (VAR) ..217
Aliases & Modifiers ..221
Viewing the Memory Map ..224
Defining constants (CON) ...225
Defining data (DATA) ...228
Run-time Math and Logic ...231
Unary Operators ...236
Binary Operators ..239

PBASIC Instructions .. 247
BRANCH ...247
BUTTON ..249
COUNT ..251
DEBUG...253
DTMFOUT ..257
END ..260

Contents

FOR...NEXT ...261
FREQOUT..264
GOSUB ...266
GOTO ...268
HIGH ..269
IF...THEN...270
INPUT ..276
LOOKDOWN ...278
LOOKUP..282
LOW ...284
NAP ..285
OUTPUT ..287
PAUSE..288
PULSIN ..289
PULSOUT ..291
PWM ..293
RANDOM..296
RCTIME ...298
READ ...302
RETURN ..304
REVERSE ...305
SERIN ...307
SEROUT ...318
SHIFTIN...328
SHIFTOUT...332
SLEEP ...334
STOP...336
TOGGLE ..337
WRITE ..339
XOUT ...342

Stamp II Application Notes ..345
Note #1: Controlling lights with X-10 (XOUT)345
Note #2: Using SHIFTIN and SHIFTOUT351
Note #3: Connecting to the telephone line359

APPEDICES ... 363
A) ASCII Chart ...363
B) Reserved Words ...365
C) BS1 to BS2 Conversion ...367
D) BS1 and BS2 Schematics ...447

Contents

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 7

1

BASIC Stamp I

System Requirements

To program the BASIC Stamp I, you’ll need the following computer
system:

• IBM PC or compatible computer
• 3.5-inch disk drive
• Parallel port
• 128K of RAM
• MS-DOS 2.0 or greater

If you have the BASIC Stamp I carrier board, you can use a 9-volt battery
as a convenient means to power the BASIC Stamp. You can also use a
5-15 volt power supply (5-40 volts on the BS1-IC rev. b), but you should
be careful to connect the supply to the appropriate part of the BASIC
Stamp. A 5-volt supply should be connected directly to the +5V pin, but
a higher voltage should be connected to the PWR pin.

Connecting a high voltage supply (greater than 6 volts) to the 5-volt pin
can permanently damage the BASIC Stamp.

Packing List

If you purchased the BASIC Stamp Programming Package, you should
have received the following items:

• BASIC Stamp manual (this manual)

• BASIC Stamp I programming cable (parallel port DB25-to-3 pin)

• BASIC Stamp II programming cable (serial port DB9-to-DB9)

• 3.5-inch diskette
If you purchased the BASIC Stamp II Starter Kit, you should have
received the following items:

• BASIC Stamp Manual (this manual)

• BASIC Stamp II programming cable (serial port DB9-to-DB9)

• 3.5-inch diskette
If any items are missing, please let us know.

Page 8 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Connecting to the PC

To program a BASIC Stamp I, you’ll need to connect it to your PC and
then run the editor/downloader software. In this section of the manual,
it’s assumed that your BASIC Stamp is a BS1-IC, and that you have the
corresponding carrier board.

To connect the BASIC Stamp to your PC, follow these steps:

1) Plug the BS1-IC onto the carrier board. The BS1-IC plugs into a
14-pin SIP socket, located near the battery clips on the carrier.
When plugged onto the carrier board, the components on the
BS1-IC should face the battery clips.

2) In the BASIC Stamp Programming Package, you received a
cable to connect the BASIC Stamp to your PC. The cable has two
ends, one with a DB25 connector and the other with a 3-pin
connector. Plug the DB25 end into an available parallel port on
your PC.

3) Plug the remaining end of the cable onto the 3-pin header on the
carrier board. On the board and the cable, you’ll notice a double-
arrow marking; the markings on the cable and board should
match up.

4) Supply power to the carrier board, either by connecting a 9-volt
battery or by providing an external power source.

With the BASIC Stamp connected and powered, run the editor/
downloader software as described later in this manual.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 9

1

BASIC Stamp I

PWR Unregulated power in: accepts 6-15 VDC (6-40 VDC on BS1-IC rev. b),
which is then regulated to 5 volts. May be left unconnected if 5 volts
is applied to the +5V pin.

GND System ground: connects to PC parallel port pin 25 (GND) for program-
ming.

PCO PC Out: connects to PC parallel port pin 11 (BUSY) for programming.

PCI PC In: connects to PC parallel port pin 2 (D0) for programming.

+5V 5-volt input/output: if an unregulated voltage is applied to the PWR pin,
then this pin will output 5 volts. If no voltage is applied to the PWR pin,
then a regulated voltage between 4.5V and 5.5V should be applied to
this pin.

RES Reset input/output: goes low when power supply is less than 4 volts,
causing the BS1-IC to reset. Can be driven low to force a reset. Do not
drive high.

P0-P7 General-purpose I/O pins: each can sink 25 mA and source 20 mA.
However, the total of all pins should not exceed 50 mA (sink) and 40
mA (source).

BS1-IC

P
W

R

G
N

D

P
C

O

P
C

I

+
5V

R
E

S

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Shown at 125%
of actual size

Vin

Vss

PCO

PCI

Vdd

RES

P0

P1

P2

P3

P4

P5

P6

P7

© 1994

REV E

BASIC Stamp
TM

BS1-IC

PC Parallel Port
25112

Reset

9-volt
Battery
Clips

Prototyping
Area

Mounting
Holes

Programming
Header

BS1-IC Socket
(pin 1)

Reset
Button

I/O
Header

Header signals are duplicated on these columns
of holes. All other holes are independent.

BS1-IC Carrier Board

Page 10 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

2N3906

2.2M2.2M

470K

Vcc

OPTIONAL
BROWNOUT
CIRCUIT

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

EE CS

PC BUSY

PC DATA

RESET

Vss

D0

D1

D2

D3

EE CLK

EE DATA

OSC1

OSC2

Vdd

D7

D6

D5

D4

4 MHz

93LC56

1

2

3

4

8

7

6

5

CS

CLK

DI

DO

Vcc

NC

ORG

Vss

4.7K

4.7K

Vcc

PC
PROGRAMMING
CONNECTOR

I/O PORT

PC parallel pin 2 (D0)
PC parallel pin 11 (BUSY)
PC parallel pin 25 (GND)

PBASIC

Must be Microchip 93LC56; other
brands may not work due to memory
access differences.

* The BS1-IC has a slightly different schematic (it uses a different reset circuit,
and it includes a 5-volt regulator). However, this schematic serves as an
example of how simple the BASIC Stamp circuit is to implement.

Current Limits of the On-Board Regulator

In some cases, you may want to know how much current the BS1-IC can
handle with its on-board regulator. At higher supply voltages, the
regulator can handle less current. The BS1-IC itself takes 1-2 mA, so any
current “left over” can be used to drive external circuits. The table below
shows the approximate current limits at various voltages:

Power Supply (volts) Total Current (mA)

5-9 50
12 40
25 10
40 2-3

We recommend a supply voltage on the low end (5-15 VDC). However,
the BS1-IC will run at higher voltages, as shown.

General Stamp Schematic*:

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 11

1

The BASIC Stamp I has 16 bytes of RAM devoted to I/O and the storage
of variables. The first two bytes are used for I/O (1 for actual pins, 1 for
direction control), leaving 14 bytes for data. This arrangement of
variable space is shown below:

Word Name Byte Names Bit Names Special Notes

Port Pins Pin0-Pin7 I/O pins; bit addressable.
Dirs Dir0-Dir7 I/O pin direction control; bit

addressable.

W0 B0 Bit0-Bit7 Bit addressable.
B1 Bit8-Bit15 Bit addressable.

W1 B2
B3

W2 B4
B5

W3 B6
B7

W4 B8
B9

W5 B10
B11

W6 B12 Used by GOSUB instruction.
B13 Used by GOSUB instruction.

The PBASIC language allows a fair amount of flexibility in naming
variables and I/O pins. Depending upon your needs, you can use the
variable space and I/O pins as bytes (Pins, Dirs, B0-B13) or as 16-bit
words (Port, W0-W6). Additionally, the I/O pins and the first two data
bytes can be used as individual bits (Pin0-Pin7, Dir0-Dir7, Bit0-Bit15). In
many cases, a single bit may be all you need, such as when storing a
status flag.

BASIC Stamp I

Page 12 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Port is a 16-bit word, which is composed of two bytes, Pins and Dirs:

Pins (byte) and Pin0-Pin7 (corresponding bits) are the I/O port pins.
When these variables are read, the I/O pins are read directly. When
these variables are written to, the corresponding RAM is written to,
which is then transferred to the I/O pins before each instruction.

Dirs (byte) and Dir0-Dir7 (corresponding bits) are the I/O port
direction bits. A “0” in one of these bits causes the corresponding
I/O pin to be an input; a “1” causes the pin to be an output. This byte
of data is transferred to the I/O port’s direction register before each
instruction.

When you write your PBASIC programs, you’ll use the symbols described
above to read and write the BASIC Stamp’s 8 I/O pins.

Normally, you’ll start your program by defining which pins are
inputs and which are outputs. For instance, “dirs = %00001111”
sets bits 0-3 as outputs and bits 4-7 as inputs (right to left).

After defining which pins are inputs and outputs, you can read and
write the pins. The instruction “pins = %11000000” sets bits 6-7
high. For reading pins, the instruction “b2 = pins” reads all 8 pins
into the byte variable b2.

Pins can be addressed on an individual basis, which may be easier.
For reading a single pin, the instruction “Bit0 = Pin7” reads the state
of I/O pin 7 and stores the reading in bit variable Bit0. The
instruction “if pin3 = 1 then start” reads I/O pin 3 and then jumps
to start (a location) if the pin was high (1).

The BASIC Stamp’s editor software recognizes the variable names
shown on the previous page. If you’d like to use different names, you
can start your program with instructions to define new names:

symbol switch = pin0 'Define label "switch" for I/O pin 0
symbol flag = bit0 'Define label "flag" for bit variable bit0
symbol count = b2 'Define label "count" for byte variable b2

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 13

1

Can I expand the BASIC Stamp’s program memory?:
No; the PBASIC interpreter only addresses 8 bits of program space,
which results in the 256-byte limitation. Using a larger EEPROM,
such as the Microchip 93LC66, won’t make any difference.

What voltage range can I use to power the BASIC Stamp:
We encourage people to use a 9-volt battery to power the BASIC
Stamp, especially if they have the carrier board. The battery is
simple and can power the BASIC Stamp for days, even weeks if
sleep mode is used.

However, if you want to use an external power supply, you can use
anything that supplies 5-15 volts DC (5-40 VDC on BS1-IC rev. b) at
a minimum of 2 mA (not including I/O current needs).

If you have a 5-volt supply, connect it to the BASIC Stamp’s +5V
pin. This will route power directly to the BASIC Stamp circuit,
bypassing the voltage regulator.

If you have a 6-15 (6-40 VDC on BS1-IC rev. b) volt supply, connect
it to the BASIC Stamp’s PWR pin. This will route power through the
on-board 5-volt regulator.

Can I use the Stamp to power external circuits?:
Yes; if you need to supply 5 volts, connect your circuit to the BASIC
Stamp’s +5V pin. If you need the unregulated input voltage, connect
your circuit to the PWR pin.

How long can the BASIC Stamp run on a 9-volt battery?:
This depends on what you’re doing with the BASIC Stamp. If your
program never uses sleep mode and has several LED’s connected
to I/O lines, then the BASIC Stamp may only run for several hours.
If, however, sleep mode is used and I/O current draw is minimal,
then the BASIC Stamp can run for weeks.

What are the sink and source capabilities of the BASIC Stamp’s I/O lines?:
The I/O pins can each sink 25 mA and source 20 mA. However, the
total sink and source for all 8 I/O lines should not exceed 50 mA
(sink) and 40 mA (source).

BASIC Stamp I

Page 14 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Does the BASIC Stamp support floating point math?:
No; the BASIC Stamp only works with integer math, which means
that no fractions are allowed. Expressions must be given as inte-
gers, and any results are given as integers. For instance, if you gave
the BASIC Stamp an instruction to divide 5 by 2, it would return a
result of 2, not 2.5; the remainder (.5) is simply lost.

How does the BASIC Stamp evaluate mathematical expressions?:
Mathematical expressions are evaluated strictly left to right. This is
important, since you may get different results than you expect. For
instance, under normal rules, the expression 2 + 3 x 4 would be
solved as 2 + (3 x 4), since multiplication takes priority over
addition. The result would be 14. However, since the BASIC Stamp
solves expressions from left to right, it would be solved as (2 + 3) x
4, for a result of 20.

When writing your programs, please remember that the left-to-
right evaluation of expressions may affect the results.

What do I need to make the BASIC Stamp support RS-232 voltages?

The BASIC Stamp’s I/O pins operate at TTL voltages (0-5 volts), so
the SERIN and SEROUT instructions operate at these voltages. This
is fine for most applications, such as BASIC Stamps communicating
with other BASIC Stamps. However, some PCs may not accept TTL
voltages, especially when the PC is receiving data. If you need real
RS-232 voltages, you can use the circuit shown below. The
LT1181ACN is available from various distributors, including Digi-
Key (call 800-344-4539).

BASIC Stamp I

5 VDC

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

LT1181ACN

0.1 µF

0.1 µF

0.1 µF

0.1 µF

Data Out (RS-232; DB9 pin 2)

Data In (RS-232; DB9 pin 3)
Data Out (Stamp; any I/O pin)

Data In (Stamp; any I/O pin)

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 15

1

loop:
pot 0,100,b2 'Read potentiometer on pin 0 and

'store result in variable b2.

b2=b2/2 'Divide result so highest value
'will be 128.

sound 1,(b2,10) 'Generate a tone using speaker
'on pin 1. Frequency is set by
'value in b2. Duration of tone
'is set to 10.

goto loop 'Repeat the process.

10K

0.1 µF

+

10 µF

40 Ω

PWR

GND

PCO

PCI

+5V

RES

P0

P1

P2

P3

P4

P5

P6

P7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

B
S

1-
IC

This page shows a simple application using a BS1-IC. The purpose of
the application is to read the value of the potentiometer and then
generate a corresponding tone on the speaker. As the potentiometer
value changes, so does the tone. For interesting variations, the potenti-
ometer could easily be changed to a thermistor or photocell.

BASIC Stamp I

Page 16 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Starting the Editor

With the BASIC Stamp connected and powered, run the editor software
by typing the following command from the DOS prompt:

STAMP

Assuming you’re in the proper directory, the BASIC Stamp software
will start running after several seconds. The editor screen is dark blue,
with one line across the top that names various functions.

Program Formatting

There are few restrictions on how programs are entered. However, you
should know the rules for entering constants, labels, and comments, as
described in the following pages:

• Constants: constant values can be declared in four ways: decimal,
hex, binary, and ASCII.

Hex numbers are preceded with a dollar sign ($), binary numbers
are preceded with a percent sign (%), and ASCII values are
enclosed in double quotes ("). If no special punctuation is used,
then the editor will assume the value is decimal. Following are
some examples:

100 'Decimal
$64 'Hex
%01100100 'Binary
"A" 'ASCII "A" (65)
"Hello" 'ASCII "H", "e", "l", "l", "o"

Most of your programs will probably use decimal values, since
this is most common in BASIC. However, hex and binary can be
useful. For instance, to define pins 0-3 as outputs and pins 4-7 as
inputs, you could use any of the following, but the binary
example is the most readable:

dirs = 15 'Decimal
dirs = $0F 'Hex
dirs = %00001111 'Binary

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 17

1

• Address Labels: the editor uses labels to refer to addresses (loca-
tions) within your program. This is different from some versions
of BASIC, which use line numbers.

Generally speaking, label names can be any combination of
letters, numbers, and underscores (_), but the first character of the
name must not be a number. Also, label names cannot use
reserved words, such as instruction names (serin, toggle, goto,
etc.) and variable names (port, w2, b13, etc.)

When first used, label names must end with a colon (:). When
called elsewhere in the program, labels are named without the
colon. The following example illustrates how to use a label to
refer to an address:

loop: toggle 0 'Toggle pin 0

for b0 = 1 to 10
toggle 1 'Toggle pin 1 ten times
next

goto loop 'Repeat the process

• Value Labels: along with program addresses, you can use labels to
refer to variables and constants. Value labels share the same
syntax rules as address labels, but value labels don’t end with a
colon (:), and they must be defined using the “symbol” directive.
The following example shows several value labels:

symbol start = 1 'Define two constant
symbol end = 10 'labels

symbol count = b0 'Define a label for b0

loop: for count = start to end
toggle 1 'Toggle pin 1 ten times
next

BASIC Stamp I

Page 18 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

• Comments: comments can be added to your program to make it
more readable.

Comments begin with an apostrophe (') and continue to the end
of the line. You can also designate a comment using the standard
REM statement found in many versions of BASIC...

symbol relay = 3 'Make label for I/O pin 3
symbol length = w2 'Make label for w2

dirs = %11111111 'Make all pins outputs
pins = %00000000 'Make all pins low

REM this is the main loop

main: length = length + 10 'Increase length by 10
gosub sub 'Call pulse out routine
goto main 'Loop back

sub: pulsout relay,length : toggle 0 : return

• General Format:

The editor is not case sensitive, except when processing strings
(such as “hello”).

Multiple instructions and labels can be combined on the same
line by separating them with colons (:).

The following example shows the same program as separate lines
and as a single-line...

Multiple-line version:

dirs = 255 'Make all pins outputs
for b2 = 0 to 100 'Count from 0 to 100
pins = b2 'Make pins = count (b2)
next 'Continue counting til 100

Single-line version:

dirs = 255 : for b2 = 0 to 100 : pins = b2 : next

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 19

1

• Mathematical Operators: the following operators may be used in
mathematical expressions:

+ add
- subtract
* multiply (returns low word of result)
** multiply (returns high word of result)
/ divide (returns quotient)
// divide (returns remainder)
min keep variable greater than or equal to value
max keep variable less than or equal to value
& logical AND
| logical OR
^ logical XOR
&/ logical AND NOT
|/ logical OR NOT
^/ logical XOR NOT

Some examples:

count = count + 1 'Increment count
timer = timer * 2 'Multiply timer by 2
b2 = b2 / 8 'Divide b2 by 8
w3 = w3 & 255 'Isolate lower byte of w3
b0 = b0 + 1 max 99 'Increment b0, but don't

'allow b0 to exceed 99
b3 = b3 - 1 min 10 'Decrement b3, but don't

'allow b3 to drop below 10

BASIC Stamp I

Page 20 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Entering & Editing Programs

As covered in the previous pages, there are some rules to remember
about the use of constants, labels, and comments. However, for the most
part, you can format your programs as you see fit.

We’ve tried to make the editor as intuitive as possible: to move up, press
the up arrow; to highlight one character to the right, press shift-right
arrow; etc.

Most functions of the editor are easy to use. Using single keystrokes,
you can perform the following common functions:

• Load, save, and run programs.

• Move the cursor in increments of one character, one word, one
line, one screen, or to the beginning or end of a file.

• Highlight text in blocks of one character, one word, one line, one
screen, or to the beginning or end of a file.

• Cut, copy, and paste highlighted text.

• Search for and/or replace text.

Editor Function Keys

The following list shows the keys that are used to perform various
functions:

Alt-R Run program in BASIC Stamp (download the
program on the screen, then run it)

Alt-L Load program from disk
Alt-S Save program on disk
Alt-Q Quit editor and return to DOS

Enter Enter information and move down one line
Tab Same as Enter

Left arrow Move left one character
Right arrow Move right one character

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 21

1

Up arrow Move up one line
Down arrow Move down one line
Ctrl-Left Move left to next word
Ctrl-Right Move right to next word

Home Move to beginning of line
End Move to end of line
Page Up Move up one screen
Page Down Move down one screen
Ctrl-Page Up Move to beginning of file
Ctrl-Page Down Move to end of file

Shift-Left Highlight one character to the left
Shift-Right Highlight one character to the right
Shift-Up Highlight one line up
Shift-Down Highlight one line down
Shift-Ctrl-Left Highlight one word to the left
Shift-Ctrl-Right Highlight one word to the right

Shift-Home Highlight to beginning of line
Shift-End Highlight to end of line
Shift-Page Up Highlight one screen up
Shift-Page Down Highlight one screen down
Shift-Ctrl-Page Up Highlight to beginning of file
Shift-Ctrl-Page Down Highlight to end of file

Shift-Insert Highlight word at cursor
ESC Cancel highlighted text

Backspace Delete one character to the left
Delete Delete character at cursor
Shift-Backspace Delete from left character to beginning of line
Shift-Delete Delete to end of line
Ctrl-Backspace Delete line

Alt-X Cut marked text and place in clipboard
Alt-C Copy marked text to clipboard
Alt-V Paste (insert) clipboard text at cursor

Alt-F Find string (establish search information)
Alt-N Find next occurrence of string

Alt-P Calibrate potentiometer scale
(see POT instruction for more information)

BASIC Stamp I

Page 22 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Running Your Program

To run the program shown on the screen, press Alt-R. The editor
software will check all available parallel ports, searching for a BASIC
Stamp. If it finds one, it will download and run your program. Note that
any program already in the BASIC Stamp will be overwritten. If the
editor is unable to locate a BASIC Stamp, it will display an error.

Assuming that you have a BASIC Stamp properly connected to your
PC, the editor will display a bargraph, which shows how the download
of your program is progressing. Typical downloads take only several
seconds, so the graph will fill quickly.

As the graph fills, you’ll notice that some of the graph fills with white
blocks, while the remainder fills with red blocks. These colors represent
how much of the BASIC Stamp’s EEPROM space is used by the
program. White represents available space, and red represents space
occupied by the program.

When the download is complete, your program will automatically start
running in the BASIC Stamp. If you used the debug directive in your
program, it will display its data when it’s encountered in the program.

To remove the download graph from the screen, press any key.

Loading a Program from Disk

To load a PBASIC program from disk, press Alt-L. A small box will
appear, prompting you for a filename. If you entered the filename
correctly, the program will be loaded into the editor. Otherwise, an
error message will be displayed.

If you decide not to load a program, press ESC to resume editing.

Saving a Program on Disk

To save a PBASIC program on disk, press Alt-S. A small box will appear,
prompting you for a filename. After the filename is entered, the editor
will save your program.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 23

1

Using Cut, Copy, and Paste

Like most word processors, the editor can easily cut, copy, and paste
text. If you need to make major changes to your program, or your
program has many repetitive routines, these functions can save a lot of
time.

The function of the cut, copy, and paste routines is to cut or copy
highlighted text to the clipboard (the clipboard is an area of memory set
aside by the editor). Text in the clipboard can later be pasted (inserted)
anywhere in your program. Both cut and paste copy text to the clip-
board, but cut also removes the text from its current location.

Please note that cutting text is different from deleting it. While both
functions remove text from its current location, only cut saves the text
to the clipboard – delete removes it entirely.

As an example of cut and paste, let’s cut a section of text and then paste
it elsewhere. The following steps will guide you through the process:

• First, you need to highlight some text. For this example, let’s
highlight everything from the cursor to the end of the line. To do
this, press Shift-End (everything from the cursor to the end of the
line should become highlighted).

• Second, with the line highlighted, press Alt-X (cut). The text
should disappear.

• Third, move the cursor to another location – anywhere is fine.
Then, press Alt-V (paste). The text should appear where the
cursor was, pushing any following text down as necessary.

The first step could be replaced with copy (Alt-C), instead of cut (Alt-
X). The only difference would be that the text would appear in its
original location, as well as the pasted location.

BASIC Stamp I

Page 24 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

Using Search & Replace

The editor has a function that allows you to search for and/or replace
text. In many instances, this function can be very useful. For example,
you may decide to change a variable name throughout your program.
Doing so manually would take a lot of time, but with search and replace,
it takes just seconds.

To set the search criteria, press Alt-F (find). A small box will appear in
the center of the screen, requesting a search string and an optional
replacement string. To perform the search, follow these steps:

• Enter the search string. If you want to search for a string that
contains the Tab or Return keys, you can do so by typing Ctrl-Tab
or Ctrl-Return; “•” will appear for each tab, “↓” for each return.

• Enter the replacement string, if necessary. If you enter a replace-
ment string, it will be copied to the clipboard (the clipboard is an
area of memory set aside by the editor). During the search, you
will have the option to replace individual occurrences of the
search string with the replacement string.

If you only want to search (without the option to replace), just
press Enter for the replacement string.

• The editor will remove the search criteria box and highlight the
first occurrence of the search string.

To replace the highlighted string with the replacement string,
press Alt-V (paste).

To find the next occurrence of the search string, press Alt-N.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 25

1

BRANCHING

IF...THEN Compare and conditionally branch.

BRANCH Branch to address specified by offset.

GOTO Branch to address.

GOSUB Branch to subroutine at address. Up to 16 GOSUB’s are
allowed.

RETURN Return from subroutine.

LOOPING

FOR...NEXT Establish a FOR...NEXT loop.

NUMERICS

{LET} Perform variable manipulation, such as A=5, B=A+2, etc.
Possible operations are add, subtract, multiply, divide,
max. limit, min. limit, and logical operations AND, OR,
XOR, AND NOT, OR NOT, and XOR NOT.

LOOKUP Lookup data specified by offset and store in variable. This
instruction provides a means to make a lookup table.

LOOKDOWN Find target’s match number (0-N) and store in variable.

RANDOM Generate a pseudo-random number.

DIGITAL I/O

OUTPUT Make pin an output.

LOW Make pin output low.

HIGH Make pin output high.

TOGGLE Make pin an output and toggle state.

PULSOUT Output a timed pulse by inverting a pin for some time.

INPUT Make pin an input

PULSIN Measure an input pulse.

REVERSE If pin is an output, make it an input. If pin is an input, make
it an output.

BUTTON Debounce button, perform auto-repeat, and branch to
address if button is in target state.

BASIC Stamp I

Page 26 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

SERIAL I/O

SERIN Serial input with optional qualifiers and variables for stor-
age of received data. If qualifiers are given, then the
instruction will wait until they are received before filling
variables or continuing to the next instruction. Baud rates
of 300, 600, 1200, and 2400 are possible. Data received
must be with no parity, 8 data bits, and 1 stop bit.

SEROUT Send data serially. Data is sent at 300, 600, 1200, or 2400
baud, with no parity, 8 data bits, and 1 stop bit.

ANALOG I/O

PWM Output PWM, then return pin to input. Used to output
analog voltages (0-5V) using a capacitor and resistor.

POT Read a 5-50K potentiometer and scale result.

SOUND

SOUND Play notes. Note 0 is silence, notes 1-127 are ascending
tones, and notes 128-255 are white noises.

EEPROM ACCESS

EEPROM Store data in EEPROM before downloading BASIC pro-
gram.

READ Read EEPROM byte into variable.

WRITE Write byte into EEPROM.

TIME

PAUSE Pause execution for 0–65536 milliseconds.

POWER CONTROL

NAP Nap for a short period. Power consumption is reduced.

SLEEP Sleep for 1-65535 seconds. Power consumption is re-
duced to approximately 20 µA.

END Sleep until the power cycles or the PC connects. Power
consumption is reduced to approximately 20 µA.

PROGRAM DEBUGGING

DEBUG Send variables to PC for viewing.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 27

BASIC Stamp I

1

BASIC Instructions

BRANCH offset,(address0,address1,...addressN)

Go to the address specified by offset (if in range).

• Offset is a variable/constant that specifies the address to branch
to (0–N).

• Addresses are labels that specify where to branch.

Branch works like the ON x GOTO command found in other
BASICs. It’s useful when you want to write something like this:

if b2 = 0 then case_0 ' b2=0: go to label "case_0"
if b2 = 1 then case_1 ' b2=1: go to label "case_1"
if b2 = 2 then case_2 ' b2=2: go to label "case_2"

You can use Branch to organize this into a single statement:

BRANCH b2,(case_0,case_1,case_2)

This works exactly the same as the previous IF...THEN example. If
the value isn’t in range (in this case if b2 is greater than 2), Branch
does nothing. The program continues with the next instruction
after Branch.

Branch can be teamed with the Lookdown instruction to create a
simplified SELECT CASE statement. See Lookdown for an example.

Sample Program:

Get_code:
serin 0,N2400,("code"),b2 ' Get serial input.

' Wait for the string "code",
' then put next value into b2.

BRANCH b2,(case_0,case_1,case_2) ' If b2=0 then case_0
' If b2=1 then case_1
' If b2=2 then case_2

goto Get_code ' If b2>2 then Get_code.

case_0: ... ' Destinations of the
case_1: ... ' Branch instruction.
case_2: ...

Page 28 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

Debounce button input, perform auto-repeat, and branch to ad-
dress if button is in target state. Button circuits may be active-low
or active-high (see the diagram on the next page).

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Downstate is a variable/constant (0 or 1) that specifies which
logical state is read when the button is pressed.

• Delay is a variable/constant (0–255) that specifies how long the
button must be pressed before auto-repeat starts. The delay is
measured in cycles of the Button routine. Delay has two special
settings: 0 and 255. If set to 0, the routine returns the button state
with no debounce or auto-repeat. If set to 255, the routine performs
debounce, but no auto-repeat.

• Rate is a variable/constant (0–255) that specifies the auto-repeat
rate. The rate is expressed in cycles of the Button routine.

• Bytevariable is the workspace for Button. It must be cleared to 0
before being used by Button for the first time.

• Targetstate is a variable/constant (0 or 1) that specifies which
state the button should be in for a branch to occur (0=not pressed,
1=pressed).

• Address is a label that specifies where to branch if the button is
in the target state.

When you press a button or flip a switch, the contacts make or break
a connection. A burst of electrical noise occurs as the contacts
bounce against each other. Button’s debounce feature prevents this
noise from being interpreted as more than one switch action.

Button also lets the Stamp react to a button press the way your PC
keyboard does to a key press. When you press a key, a character
appears on the screen. If you hold the key down, there’s a delay,
then a rapid-fire stream of characters appears on the screen. Button’s
autorepeat function can be set up to work the same way.

Button is designed to be used inside a program loop. Each time
through the loop, Button checks the state of the specified pin. When

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 29

BASIC Stamp I

1

BASIC Instructions

it first matches downstate,
Button debounces the
switch. Then, in accor-
dance with targetstate, it
either branches to address
(targetstate = 1) or doesn’t
(targetstate = 0).

If the switch is kept in
downstate, Button tracks the
number of program loops
that execute. When this
count equals delay, Button again triggers the action specifed by
targetstate and address. Hereafter, if the switch remains in downstate,
Button waits rate number of cycles between actions.

The important thing to remember about Button is that it does not
stop program execution. In order for its delay and autorepeat
functions towork, Button must execute from within a loop.

Sample Program:

' This program toggles (inverts) the state of an LED on pin 0 when the
' active-low switch on pin 7 is pressed. When the switch is held down, Button
' waits, then rapidly autorepeats the Toggle instruction, making the LED
' flash rapidly. When the switch is not pressed, Button skips the Toggle
' instruction. Note that b2, the workspace variable for Button, is cleared
' before its first use. Don't clear it within the loop.

let b2 = 0 ' Button workspace cleared.
Loop:

BUTTON 7,0,200,100,b2,0,skip ' Go to skip unless pin7=0.
Toggle 0 ' Invert LED.
... ' Other instructions.

skip:
goto Loop ' Skip toggle and go to Loop.

+5

10k

to I/O pin

active-high
(downstate = 1)

+5

10k

to I/O pin

active-low
(downstate = 0)

Example button circuits.

LED hookup for sample program.

470

Stamp
pin 0

LED

Page 30 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

DEBUG variable{,variable}

Displays the specified variable (bit, byte, or word) in a window on
the screen of a connected PC. Debug works only after a “run”
(ALT-R) download has finished.

Debug accepts formatting modifiers as follows:

• No modifiers: prints “variable = value”

• # before variable, as in #b2, prints the decimal value, without the
“variable =” text.

• $ before variable, as in $b2, prints hex value.

• % before variable, as in %b2, prints binary value.

• @ before variable, as in @b2, prints the ASCII character
corresponding to the value of the variable.

• Text in quotes appears as typed.

• cr (carriage return) causes printing in the Debug window to start
a new line.

• cls (clear screen) clears the Debug window.

• commas must separate all variables used with Debug.

Samples:

DEBUG b2 ' Print "b2 = " + value of b2
DEBUG #b2 ' Print value of b2
DEBUG "reading is ",b2 ' Print "reading is " & value of b2
DEBUG #%b2 ' Print value of b2 in binary
DEBUG #@b2 ' Display the ASCII character

' corresponding to the value in b2.
DEBUG "inputs ",b2,b3,cr ' Print "inputs" & value of b2 & value

' of b3 & carriage return.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 31

BASIC Stamp I

1

BASIC Instructions

EEPROM {location},(data,data,...)

Store values in EEPROM before downloading the BASIC program.

• Location is an optional variable/constant (0–255) that specifies
the starting location in the EEPROM at which data should be
stored. If no location is given, data is written starting at the next
available location.

• Data are variables/constants (0–255) to be stored sequentially in
the EEPROM.

EEPROM is useful for storing values to be used by your program.
One application is to store long messages for use by Serout as shown
below:

Program Sample 1:

' Sends the text "A very long message indeed..." then reads address 255 for
' the last instruction location of the program.

serout 0,N2400,("A very long message indeed...")
read 255,b2 ' Get last program location (reflects length of program)
debug b2 ' Display it on the screen.

Program Sample 2:

' Sends the text "A very long message indeed..." then reads address 255 for
' the last instruction location of the program.

EEPROM 0,("A very long message indeed...")
for b2 = 0 to 28 ' Send message 1 char at a time.
read b2,b3 ' Read data at location b2 of
serout 0,N2400,(b3) ' EEPROM into b3. Transmit b3.
next ' Send next character.
read 255,b2 ' Get last program location (reflects length of program)
debug b2 ' Display it on the screen.

The first program sample shows an endpoint of 197, meaning that
it uses 58 bytes of program memory to send the 29-byte message.
Sample 2 has an endpoint of 232 (23 bytes of program memory
used). When you add 29 bytes for the storage of the message,
sample 2 is 6 bytes more efficient. The savings are greater when the
messages are used at several points in a program.

Page 32 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

END

Enter sleep mode indefinitely. The Stamp wakes up when the
power cycles or the PC connects. Power consumption is reduced to
about 20 µA, assuming no loads are being driven.

If you do leave Stamp pins in an output-high or output-low state
driving loads when End executes, two things will happen:

• The loads will continue to draw current from the Stamp’s power
supply.

• Every 2.3 seconds, current to those loads will be interrupted for
a period of approximately 18 milliseconds (ms).

The reason for the output glitch every 2.3 seconds has to do with the
design of the PBASIC interpreter chip. It has a free-running clock
called the “watchdog timer” that can periodically reset the proces-
sor, causing a sleeping Stamp to wake up. Once awake, the Stamp
checks its program to determine whether it should remain awake
or go back to sleep. After an End instruction, the Stamp has standing
orders to go back to sleep.

Unfortunately, the watchdog timer cannot be shut off, so the Stamp
actually gets its sleep as a series of 2.3-second naps. At the end of
each nap, the watchdog timer resets the PBASIC chip. Among other
things, a reset causes all of the chip’s pins to go into input mode. It
takes approximately 18 ms for the PBASIC firmware to get control,
restore the pins to their former state, and put the Stamp back to
sleep.

If you use End, Nap, or Sleep in your programs, make sure that your
loads can tolerate these periodic power outages. The easy solution
is often to connect pull-up or pull-down resistors as appropriate to
ensure a continuing supply of current during the reset glitch.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 33

BASIC Stamp I

1

BASIC Instructions

FOR variable = start TO end {STEP {-} increment}...NEXT {variable}

Establish a For...Next loop. Variable is set to the value start. Code
between the For and Next instructions is then executed. Variable is
then incremented/decremented by increment (if no increment value
is given, the variable is incremented by 1). If variable has not reached
or passed the value end, the instructions between For and Next are
executed again. If variable has reached or passed end, then the
program continues with the instruction after Next. The loop is
executed at least once, no matter what values are given for start and
end.

Your program can have as many For...Next loops as necessary, but
they cannot be nested more than eight deep (in other words, your
program can’t have more than eight loops within loops).

• Variable is a bit, byte, or word variable used as an internal
counter. Start and end are limited by the capacity of variable (bit
variables can count from 0 to 1, byte variables from 0 to 255, and
word variables from 0 to 65535).

• Start is a variable/constant which specifies the initial value of
variable.

• End is a variable/constant which specifies the ending value of
variable.

• Increment is an optional variable/constant by which the counter
increments or decrements (if negative). If no step value is given,
the variable increments by 1.

• Variable (after Next) is optional. It is used to clarify which of a
series of For...Next loops a particular Next refers to.

Program Samples:

Programmers most often use For...Next loops to repeat an action a
fixed number of times, like this:

FOR b2 = 1 to 10 ' Repeat 10 times.
 debug b2 ' Show b2 in debug window.
NEXT ' Again until b2>10.

Don’t overlook the fact that all of the parameters of a For...Next loop

Page 34 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

can be variables. Not only can your program establish these values
itself, it can also modify them while the loop is running. Here’s an
example in which the step value increases with each loop:

let b3 = 1
FOR b2 = 1 to 100 STEP b3 ' Each loop, add b3 to b2.
debug b2 ' Show b2 in debug window.
let b3 = b3+2 ' Increment b3.
NEXT ' Again until b2>15.

If you run this program, you may notice something familiar about
the numbers in the debug window (1,4,9,16,25,36,49...). They are all
squares (12=1, 22=4, 32=9, 42=16, etc.), but our program used addi-
tion, not multiplication, to calculate them. This method of generat-
ing a polynomial function is credited to Sir Isaac Newton.

There is a potential bug in the For...Next structure. PBASIC uses 16-
bit integer math to increment/decrement the counter variable and
compare it to the end value. The maximum value a 16-bit variable
can hold is 65535. If you add 1 to 65535, you get 0 (the 16-bit register
rolls over, much like a car’s odometer does when you exceed the
maximum mileage it can display).

If you write a For...Next loop whose step value is larger than the
difference between the end value and 65535, this rollover will cause
the loop to execute more times than you expect. Try the following:

FOR w1 = 0 to 65500 STEP 3000 ' Each loop add 3000 to w1.
 debug w1 ' Show w1 in debug window.
NEXT ' Again until w1>65500.

The value of w1 increases by 3000 each trip through the loop. As it
approaches the stop value, an interesting thing happens: 57000,
60000, 63000, 464, 3464... It passes the end value and keeps going.
That’s because the result of the calculation 63000 + 3000 exceeds the
maximum capacity of a 16-bit number. When the value rolls over to
464, it passes the test “is w1 > 65500?” used by Next to determine
when to end the loop.

The same problem can occur when the step value is negative and
larger (in absolute value) than the difference between the end value
and 0.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 35

BASIC Stamp I

1

BASIC Instructions

GOSUB address

Store the address of the instruction following Gosub, branch to
address, and continue execution there. The next Return instruction
takes the program back to the stored address, continuing the
program on the instruction following the most recent Gosub.

• Address is a label that specifies where to branch. Up to 16
GOSUBs are allowed per program.

PBASIC stores data related to Gosubs in variable w6. Make sure that
your program does not write to w6 unless all Gosubs have Returned,
and don’t expect data written to w6 to be intact after a Gosub.

If a series of instructions is used at more than one point in your
program, you can turn those instructions into a subroutine. Then,
wherever you would have inserted that code, you can simply write
Gosub label (where label is the name of your subroutine).

Sample Program:

' In this program, the subroutine test takes a pot measurement, then performs
' a weighted average by adding 1/4 of the current measurement to 3/4 of a
' previous measurement. This has the effect of smoothing out noise.

for b0 = 1 to 10
GOSUB test ' Save this address & go to test.
serout 1,N2400,(b2) ' Return here after test.
next ' Again until b0 > 10.
end ' Prevents program from running into test.

test:
pot 0,100,b2 ' Take a pot reading.
let b2 = b2/4 + b4 ' Make b2 = (.25*b2)+b4.
let b4 = b2 * 3 / 4 ' Make b4 = .75*b2.

return ' Return to previous address+1 instruction.

The Return instruction at the end of test sends the program to the
instruction immediately following Gosub test; in this case Serout.

Make sure that your program cannot wander into a subroutine
without Gosub. In the sample, what if End were removed? After the
loop , execution would continue in test. When it reached Return, the
program would jump back into the the For...Next loop at Serout
because this was the last return address assigned. The For...Next
loop would execute forever.

Page 36 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

GOTO address

Branch to address, at which point execution continues.

• Address is a label that specifies where to branch.

Sample Program:

abc:
pulsout 0,100 ' Generate a 1000-µs pulse on pin 0.
GOTO abc ' Repeat forever.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 37

BASIC Stamp I

1

BASIC Instructions

HIGH pin

Make the specified pin output high. If the pin is programmed as an
input, it changes to an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin.

You can think of the High instruction as the equivalent of:

output 3 ' Make pin 3 an output.
let pin3 = 1 ' Set pin 3 high.

Notice that the Output command accepts the pin number (3), while
Let requires the pin’s variable name pin3. So, in addition to saving
oneinstruction, High allows you to make a pin output-high using
only its number. When you look at the sample program below,
imagine how difficult it would be to write it using Output and Let.

This points out a common bug involving High. Programmers some-
times substitute pin names like pin3 for the pin number. Remember
that those pin names are really bit variables. As bits, they can hold
values of 0 or 1. The statement “High pin3” is a valid BASIC
instruction, but it means, “Get the state of pin3. If pin3 is 0, make
pin 0 output high. If pin3 is 1, make pin 1 output high.”

Sample Program:

' One at a time, change each of the pins to output and set it high.
for b2 = 0 to 7 ' Eight pins (0-7).
HIGH b2 ' Set pin no. indicated by b2.
pause 500 ' Wait 1/2 second between pins.
next ' Do the next pin.

Page 38 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

IF variable ?? value {AND/OR variable ?? value...} THEN address

Compare variable(s) to value(s) and branch if result is true.

• ?? is one of the following operators: = (equal), <> (not equal),
> (greater than), < (less than), >= (greater than or equal to),
<= (less than or equal to)

• Variable is a variable that is compared to value(s)

• Value is a variable or constant for comparison

• Address is a label that specifies where to branch if the result of
the comparison(s) is true

Unlike those in some other flavors of BASIC, this If...Then state-
ment can only go to an address label. It does not support statements
like “IF x > 30 THEN x = 0.” To do the same thing neatly in PBASIC
requires a little backwards thinking:

IF x <= 30 THEN skip ' If x is less than or equal
let x = 0 ' to 30, don't make x=0.
skip: ... ' Program continues.

Unless x > 30, the program skips over the instruction “let x = 0.”

PBASIC’s If...Then can evaluate two or more comparisons at one
time with the conjunctions And and Or. It works from left to right,
and does not accept parentheses to change the order of evaluation.
It can be tricky to anticipate the outcome of compound compari-
sons. We suggest that you set up a test of your logic using debug as
shown in the sample program below.

Sample Program:

' Evaluates the If...Then statement and displays the result in a debug window.
let b2 = 7 ' Assign values.
let b3 = 16
IF b3 < b2 OR b2 = 7 THEN True ' B3 is not less than b2, but

' b2 is 7: so statement is true.
debug "statment is false" ' If statement is false, goto here.

end
True:

debug "statement is true" ' If statement is true, goto here.
end

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 39

BASIC Stamp I

1

BASIC Instructions

INPUT pin

Make the specified pin an input. This turns off the pin’s output
drivers, allowing your program to read whatever state is present on
the pin from the outside world.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

There are several ways to set pins to input. When a program begins,
all of the Stamp’s pins are inputs. Input instructions (Pulsin, Serin)
automatically change the specified pin to input and leave it in that
state. Writing 0s to particular bits of the variable dirs makes the
corresponding pins inputs. And then there’s the Input instruction.

When a pin is set to input, your program can check its state by
reading its value. For example:

Hold: if pin4 = 0 then Hold ' Stay here until pin4 is 1.

The program is reading the state of pin 4 as set by external circuitry.
If nothing is connected to pin 4, it could be in either state (1 or 0) and
could change states apparently at random.

What happens if your program writes to a pin that is set up as an
input? The state is written to the output latch assigned to the pin.
Since the output drivers are disconnected when a pin is an input,
this has no effect. If the pin is changed to output, the last value
written to the latch will appear on the pin. The program below
shows how this works.

Sample Program:

' To see this program in action, connect a 10k resistor from pin 7 to +5V.
' When the program runs, a debug window will show you the state at pin 7
' (a 1, due to the +5 connection); the effect of writing to an input pin (none);
' and the result of changing an input pin to output (the latched state appears
' on the pin and may be read by your program). Finally, the program shows
' how changing pin 7 to output writes a 1 to the corresponding bit of dirs.

INPUT 7 ' Make pin 7 an input.
debug "State present at pin 7: ",#pin7,cr,cr
let pin7 = 0 ' Write 0 to output latch.
debug "After 0 written to input: ",#pin7,cr,cr
output 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",#pin7,cr
debug "Dirs (binary): ",#%dirs ' Show contents of dirs.

Page 40 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

{LET} variable = {-}value ?? value...

Assign a value to the variable and/or perform logic operations on
the variable. All math and logic is done at the word level (16 bits).

The instruction “Let” is optional. For instance, “A=10” is identical
to “Let A=10”.

• ?? is one of the following operators:

+ add
– subtract
* multiply (returns low word of result)
** multiply (returns high word of result)
/ divide (returns quotient)
// divide (returns remainder)
min keep variable greater than or equal to value
max keep variable less than or equal to value
& logical AND
| logical OR
^ logical XOR
&/ logical AND NOT
|/ logical OR NOT
^/ logical XOR NOT

• Variable is assigned a value and/or manipulated.

• Value(s) is a variable/constant which affects the variable.

When you write programs that perform math, bear in mind the
limitations of PBASIC’s variables: all are positive integers; bits can
represent 0 or 1; bytes, 0 to 255; and words, 0 to 65535. PBASIC
doesn’t understand floating-point numbers (like 3.14), negative
numbers (–73), or numbers larger than 65535.

In most control applications, these are not serious limitations. For
example, suppose you needed to measure temperatures from -50°
to +200°F. By assigning a value of 0 to –50° and 65535 to +200° you
would have a resolution of 0.0038°!

The integer restriction doesn’t mean you can’t do advanced math
withthe Stamp. You just have to improvise . Suppose you needed
to use the constant π (3.14159...) in a program. You would like to
write:

Let w0 = b2 * 3.14

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 41

BASIC Stamp I

1

BASIC Instructions

However, the number “3.14” is a floating-point number, which the
Stamp doesn’t understand. There is an alternative. You can express
such quantities as fractions. Take the value 1.5. It is equivalent to
the fraction 3/2. With a little effort you can find fractional substi-
tutes for most floating-point values. For instance, it turns out that
the fraction 22/7 comes very close to the value of π. To perform the
calculation Let w0 = b2 * 3.14, the following instruction will do the
trick:

Let w0 = b2 * 22 / 7

PBASIC works out problems from left to right. You cannot use
parentheses to alter this order as you can in some other BASICs.
And there is no “precedence of operators” that (for instance) causes
multiplication to be done before addition. Many BASICs would
evaluate the expression “2+3*4” as 14, because they would calcu-
late “3*4” first, then add 2. PBASIC, working from left to right,
evaluates the expression as 20, since it calculates “2+3” and multi-
plies the result by 4. When in doubt, work up an example problem
and use debug to show you the result.

Sample Program:

pot 0,100,b3 ' Read pot, store result in b3.
LET b3=b3/2 ' Divide result by 2.
b3=b3 max 100 ' Limit result to 0-100.

' Note that "LET" is not necessary.

Page 42 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

LOOKDOWN target,(value0,value1,...valueN),variable

Search value(s) for target value. If target matches one of the values,
store the matching value’s position (0–N) in variable.

If no match is found, then the variable is unaffected.

• Target is the variable/constant being sought.

• Value0, value1,... is a list of values. The target value is compared
to these values

• Variable holds the result of the search.

Lookdown’s ability to convert an arbitrary sequence of values into an
orderly sequence (0,1,2...) makes it a perfect partner for Branch.
Using Lookdown and Branch together, you can create a SELECT
CASE statement.

Sample Program:

' Program receives the following one-letter instructions over a serial
' linkand takes action: (G)o, (S)top, (L)ow, (M)edium, (H)igh.
Get_cmd: serin 0,N2400,b2 ' Put input value into b2.

LOOKDOWN b2,("GSLMH"),b2 ' If b2="G" then b2=0 (see note)
' If b2="S" then b2=1
' If b2="L" then b2=2
' If b2="M" then b2=3
' If b2="H" then b2=4

branch b2,(go,stop,low,med,hi) ' If b2=0 then go
' If b2=1 then stop
' If b2=2 then low
' If b2=3 then med
' If b2=3 then hi

goto Get_cmd ' Not in range; try again.
go: ... ' Destinations of the
stop: ... ' Branch instruction.
low: ...
med: ...
hi: ...
' Note: In PBASIC instructions, including EEPROM, Serout, Lookup and
' Lookdown, strings may be formatted several ways. The Lookdown command
' above could also have been written:
' LOOKDOWN b2,(71,83,76,77,72),b2 ' ASCII codes for "G","S","L"...
' or
' LOOKDOWN b2,("G","S","L","M","H"),b2

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 43

BASIC Stamp I

1

BASIC Instructions

LOOKUP offset,(value0,value1,...valueN),variable

Look up data specified by offset and store it in variable. For instance,
if the values were 2, 13, 15, 28, 8 and offset was 1, then variable would
get the value “13”, since “13” is the second value in the list (the first
value is #0, the second is #1, etc.). If offset is beyond the number of
values given, then variable is unaffected.

• Offset specifies the index number of the value to be looked up.

• Value0, value1,... is a table of values.

• Variable holds the result of the lookup.

Many applications require the computer to calculate an output
value based on an input value. When the relationship is simple, like
“out = 2*in”, it’s no problem at all. But what about relationships that
are not so obvious? In PBASIC you can use Lookup.

For example, stepper motors work in an odd way. They require a
changing pattern of 1s and 0s controlling current to four coils. The
sequence appears in the table to the right.

Repeating that sequence makes the motor
turn. The program below shows how to use a
Lookup table to generate the sequence.

Sample Program:

' Output the four-step sequence to drive a stepper motor w/on-screen simulation.
let dirs = %00001111 ' Set lower 4 pins to output.

Rotate:
for b2 = 0 to 3
 LOOKUP b2,(10,9,5,6),b3 ' Convert offset (0-3)

' to corresponding step.
 let pins = b3 ' Output the step pattern.
 LOOKUP b2,("|/-\"),b3 ' Convert offset (0-3)

' to "picture" for debug.
 debug cls,#%pins," ",#@b3 ' Display value on pins,
next ' animated "motor."

goto Rotate ' Do it again.

' Note: In the debug line above, there are two spaces between the quotes.

0 1010 10
1 1001 9
2 0101 5
3 0110 6

Step # Binary Decimal

Page 44 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

LOW pin

Make the specified pin output low. If the pin is programmed as an
input, it changes to an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

You can think of the Low instruction as the equivalent of:

output 3 ' Make pin 3 an output.
let pin3 = 0 ' Make pin 3 low.

Notice that the Output command accepts the pin number (3), while
Let requires the pin’s variable name pin3. So, in addition to saving
one instruction, Low allows you to make a pin output-low using
only its number. When you look at the sample program below,
imagine how difficult it would be to write it using Output and Let.

This also points out a common bug involving Low. Programmers
sometimes substitute pin names like pin3 for the pin number.
Remember that those pin names are really bit variables. As bits,
they can hold values of 0 or 1. The statement “Low pin3” is a valid
PBASIC instruction, but it means, “Get the state of pin3. If pin3 is 0,
make pin 0 output low. If pin3 is 1, make pin 1 output low.”

Sample Program:

' One at a time, change each of the pins to output and make it low.
for b2 = 0 to 7 ' Eight pins (0-7).
LOW b2 ' Clear pin no. indicated by b2.
pause 500 ' Wait 1/2 second between pins.
next ' Do the next pin.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 45

BASIC Stamp I

1

BASIC Instructions

NAP period

Enter sleep mode for a short period. Power consumption is reduced
to about 20 µA, assuming no loads are beingdriven.

• Period is a variable/constant which
determines the duration of the reduced
power nap. The duration is (2^period) *
approximately 18 ms. Period can range
from 0 to 7, resulting in the nap lengths
shown in the table.

Nap uses the same shutdown/startup
mechanism as Sleep, with one big difference. During sleep, the
Stamp compensates for variations in the speed of the watchdog
timer that serves as its alarm clock. As a result, longer sleep
intervals are accurate to about ±1 percent. Naps are controlled by
the watchdog timer without compensation. Variations in tempera-
ture, voltage, and manufacturing of the PBASIC chip can cause the
actual timing to vary by as much as –50, +100 percent (i.e., a period-
0 nap can range from 9 to 36 ms).

If your Stamp application is driving loads (sourcing or sinking
current through output-high or output-low pins) during a nap,
current will be interrupted for about 18 ms when the Stamp wakes
up. The reason is that the reset that awakens the Stamp also
switches all of the pins input mode for about 18 ms. When PBASIC
regains control, it restores the I/O direction dictated by your
program.

When you use End, Nap, or Sleep, make sure that your loads can
tolerate these glitches. The simplest way is often to connect resistors
high or low (to +5V or ground) as appropriate to ensure a continu-
ing supply of current during reset.

The sample program on the next page can be used to demonstrate
the effects of the nap glitch with either an LED and resistor, or an
oscilloscope, as shown in the diagram.

Sample Program:

' During the Nap period, the Stamp will continue to drive loads connected to

Period 2period Nap Length
0 1 18 ms
1 2 36 ms
2 4 72 ms
3 8 144 ms
4 16 288 ms
5 32 576 ms
6 64 1152 ms
7 128 2304 ms

Page 46 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

' pins that are configured as outputs. However, at the end of a Nap, all pins
' briefly change to input, interrupting the current. This program may be
' used to demonstrate the effect.

low 7 ' Make pin 7 output-low.
Again:

NAP 4 ' Put the Stamp to sleep for 288 ms.
goto Again ' Nap some more.

+5

10k

Oscilloscope

Use either of these circuits to observe the output glitch when the Stamp awakens from a
Nap. Pin 7 is output low while the Stamp is asleep. When it resets, all pins switch to input,

allowing the resistor to pull pin 7 high (left) or causing the LED to blink off (right).

470

Stamp
pin 7

LED
Stamp
pin 7

+5

Stamp asleep (288ms)

reset (18ms)

OR

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 47

BASIC Stamp I

1

BASIC Instructions

OUTPUT pin

Make the specified pin an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

When a program begins, all of the Stamp’s pins are inputs. If you
want to drive a load, like an LED or logic circuit, you must configure
the appropriate pin as an output.

Output instructions (High, Low, Pulsout, Serout, Sound and Toggle)
automatically change the specified pin to output and leave it in that
state. Although not technically an output instruction, Pot also
changes a pin to output. Writing 1s to particular bits of the variable
Dirs causes the corresponding pins to become outputs. And then
there’s Output.

When a pin is configured as an output, you can change its state by
writing a value to it, or to the variable Pins. When a pin is changed
to output, it may be a 1 or a 0, depending on values previously
written to the pin. To guarantee which state a pin will be in, either
use the High or Low instructions to change it to output, or write the
appropriate value to it immediately before switching to output.

Sample Program:

' To see this program in action, connect a 10k resistor from pin 7 to the +5
' power-supply rail. When the program runs, a debug window will show you the
' the state at pin 7 (a 1, due to the +5 connection); the effect of writing
' to an input pin (none); and the result of changing an input pin to output
' (the latched state appears on the pin and may be read by your program).
' Finally, the program will show how changing pin 7 to output wrote
' a 1 to the corresponding bit of the variable Dirs.

input 7 ' Make pin 7 an input.
debug "State present at pin 7: ",#pin7,cr,cr
let pin7 = 0 ' Write 0 to output latch.
debug "After 0 written to input: ",#pin7,cr,cr
OUTPUT 7 ' Make pin 7 an output.
debug "After pin 7 changed to output: ",#pin7,cr
debug "Dirs (binary): ",#%dirs

Page 48 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

PAUSE milliseconds

Pause program execution for the specified number of milliseconds.

• Milliseconds is a variable/constant (0–65535) that specifies how
many milliseconds to pause.

The delays produced by the Pause instruction are as accurate as the
Stamp’s ceramic resonator timebase, ±1 percent. When you use
Pause in timing-critical applications, keep in mind the relatively
low speed of the BASIC interpreter (about 2000 instructions per
second). This is the time required for the PBASIC chip to read and
interpret an instruction stored in the EEPROM.

Since the PBASIC chip takes 0.5 milliseconds to read in the Pause
instruction, and 0.5 milliseconds to read in the instruction follow-
ing it, you can count on loops involving Pause taking at least 1
millisecond longer than the Pause period itself. If you’re program-
ming timing loops of fairly long duration, keep this (and the 1-
percent tolerance of the timebase) in mind.

Sample Program:

abc:
low 2 ' Make pin 2 output low.
PAUSE 100 ' Pause for 0.1 second.
high 2 ' Make pin 2 output high.
PAUSE 100 ' Pause for 0.1 second.

goto abc

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 49

BASIC Stamp I

1

BASIC Instructions

POT pin,scale,variable

Read a 5–50k potentiometer, thermistor, photocell, or other vari-
able resistance. The pin specified by Pot must be connected to one
side of a resistor, whose other side is connected through a capacitor
to ground. A resistance measurement is
taken by timing how long it takes to dis-
charge the capacitor through the resistor.
If the pin is an input when Pot executes, it
will be changed to output.

• Pin is a variable/constant (0–7) that
specifies the I/O pin to use.

• Scale is a variable/constant (0–255) used to scale the instruction’s
internal 16-bit result. The 16- bit reading is multiplied by (scale/
256), so a scale value of 128 would reduce the range by
approximately 50%, a scale of 64 would reduce to 25%, and so on.
The Alt-P option (explained below) provides a means to find the
best scale value for a particular resistor.

• Variable is used to store the final result of the reading. Internally,
the Pot instruction calculates a 16-bit value, which is scaled down
to an 8-bit value. The amount by which the internal value must be
scaled varies with the size of the resistor being used.

 Finding the best Pot scale value:

• To find the best scale value, connect the resistor to be used with
the Pot instruction to the Stamp, and connect the Stamp to the PC.

• Press Alt-P while running the Stamp’s editor software. A special
calibration window appears, allowing you to find the best value.

• The window asks for the number of the I/O pin to which the
resistor is connected. Select the appropriate pin (0-7).

• The editor downloads a short program to the Stamp (this
overwrites any program already stored in the Stamp).

• Another window appears, showing two numbers: scale and
value. Adjust the resistor until the smallest possible number is
shown for scale (we’re assuming you can easily adjust the resistor,
as with a potentiometer).

variable
resistance
5–50k

to I/O pin

0.1µF

Page 50 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

Once you’ve found the smallest number for scale, you’re done. This
number should be used for the scale in the Pot instruction.

Optionally, you can verify the scale number found above by
pressing the spacebar. This locks the scale and causes the Stamp to
read the resistor continuously. The window displays the value. If
the scale is good, you should be able to adjust the resistor, achieving
a 0–255 reading for the value (or as close as possible). To change the
scale value and repeat this step, just press the spacebar. Continue
this process until you find the best scale.

Sample Program:

abc:
POT 0,100,b2 ' Read potentiometer on pin 0.
serout 1,N300,(b2) ' Send potentiometer reading

' over serial output.
goto abc ' Repeat the process.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 51

BASIC Stamp I

1

BASIC Instructions

PULSIN pin,state,variable

Change the specified pin to input and measure an input pulse in
10µs units.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• State is a variable/constant (0 or 1) that specifies which edge
must occur before beginning the measurement.

• Variable is a variable used to store the result of the measurement.
The variable may be a word variable with a range of 1 to 65535,
or a byte variable with a range of 1 to 255.

Many analog properties (voltage, resistance, capacitance, frequency,
duty cycle) can be measured in terms of pulse durations. This
makes Pulsin a valuable form of analog-to-digital conversion.

You can think of Pulsin as a fast stopwatch that is triggered by a
change in state (0 or 1) on the specified pin. When the state on the
pin changes to the state specified in Pulsin, the stopwatch starts
counting. When the state on the pin changes again, the stopwatch
stops.

If the state of the pin doesn’t change (even if it is already in the state
specified in the Pulsin instruction), the stopwatch won’t trigger.
Pulsin waits a maximum of 0.65535 seconds for a trigger, then
returns with 0 in variable.

The variable can be either a word or a byte. If the variable is a word,
the value returned by Pulsin can range from 1 to 65535 units of 10µs.
If the variable is a byte, the value returned can range from 1 to 255
units of 10µs. Internally, Pulsin always uses a 16-bit timer. When
your program specifies a byte, Pulsin stores the lower 8 bits of the
internal counter into it. Pulse widths longer than 2550µs will give
false, low readings with a byte variable. For example, a 2560 µs
pulse returns a Pulsin reading of 256 with a word variable and 0 with
a byte variable.

Sample Program:

PULSIN 4,0,w2 ' Measure an input pulse on pin 4.
serout 1,n300,(b5) ' Send high byte of 16-bit pulse measurement
 . . . ' over serial output.

Page 52 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

PULSOUT pin,time

Generate a pulse by inverting a pin for a specified amount of time.
If the pin is an input when Pulsout is executed, it will be changed to
an output.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Time is a variable/constant (0–65535) that specifies the length of
the pulse in 10µs units.

Sample Program:

abc:
PULSOUT 0,3 ' Invert pin 0 for 30

' microseconds.
pause 1 ' Pause for 1 ms.

goto abc ' Branch to abc.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 53

BASIC Stamp I

1

BASIC Instructions

PWM pin,duty,cycles

Output pulse-width-modulation on a pin, then return the pin to
input state. PWM can be used to generate analog voltages (0-5V)
through a pin connected to a resistor and
capacitor to ground; the resistor-capaci-
tor junction is the analog output (see
circuit). Since the capacitor gradually
discharges, PWM should be executed pe-
riodically to update and/or refresh the
analog voltage.

• Pin is a variable/constant (0–7) which
specifies the I/O pin to use.

• Duty is a variable/constant (0–255) which specifies the analog
level desired (0–5 volts).

• Cycles is a variable/constant (0–255) which specifies the number
of cycles to output. Larger capacitors require multiple cycles to
fully charge. Each cycle takes about 5 ms.

PWM emits a burst of 1s and 0s whose ratio is proportional to the
duty value you specify. If duty is 0, then the pin is continuously low
(0); if duty is 255, then the pin is continuously high. For values in
between, the proportion is duty/255. For example, if duty is 100, the
ratio of 1s to 0s is 100/255 = 0.392, approximately 39 percent.

When such a burst is used to charge a capacitor arranged as shown
in the schematic, the voltage across the capacitor is equal to (duty/
255) * 5. So if duty is 100, the capacitor voltage is (100/255) * 5 = 1.96
volts.

This voltage will drop as the capacitor discharges through what-
ever load it is driving. The rate of discharge is proportional to the
current drawn by the load; more current = faster discharge. You can
combat this effect in software by refreshing the capacitor’s charge
with frequent doses of PWM.

You can also buffer the output to greatly reduce the need for
frequent PWM cycles. The schematic on the next page shows an
example. Feel free to substitute more sophisticated circuits; this
“op-amp follower” is merely a suggestion.

10k

from
I/O pin

10µF

analog
voltage
output

Page 54 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

If you use a buffer
circuit, you will still
have to refresh the
capacitor from time
to time. When the
pin is configured to
input after PWM ex-
ecutes, it is effec-
tively disconnected
from the resistor/ca-
pacitor circuit. How-
ever, leakage currents of up to 1µA can flow into or out of this
“disconnected” pin. Over time, these small currents will cause the
voltage on the capacitor to drift. The same applies for leakage
current from the op-amp’s input, as well as the capacitor’s own
internal leakage. Executing PWM occasionally will reset the capaci-
tor voltage to the intended value.

One more thing: The name “PWM” may lead you to expect a neat
train of fixed-width pulses for a given duty value. That’s not the
case. When viewed on an oscilloscope, the PWM output looks like
a noisy jumble of varying pulsewidths. The only guarantee is that
the overall ratio of highs to lows is in the proportion specified by
duty.

Sample Program:

abc:
serin 0,n300,b2 ' Receive serial byte.
PWM 1,b2,20 ' Output an analog voltage proportional to

' the serial byte received

CA5160

0.1µF

2k

+5

7

4
6

2

3
10k

100k
pot

1
5

4.7k

0.47µF

from I/O
pin

Stiff
voltage
output

–

+

Op-amp buffer for PWM.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 55

BASIC Stamp I

1

BASIC Instructions

RANDOM wordvariable

Generate the next pseudo-random number in wordvariable.

• Wordvariable is a variable (0–65535) that acts as the routine’s
workspace and its result. Each pass through Random leaves the
next number in the pseudorandom sequence.

The Stamp uses a sequence of 65535 essentially random numbers to
execute this instruction. When Random executes, the value in
wordvariable determines where to “tap” into the sequence of
random numbers. If the same initial value is always used in
wordvariable, then the same sequence of numbers is generated.
Although this method is not absolutely random, it’s good enough
for most applications.

To obtain truly random results, you must add an element of
uncertainty to the process. For instance, your program might
execute Random continuously while waiting for the user to press a
button.

Sample Program:

loop:
RANDOM w1 ' Generate a 16-bit random number.
sound 1,(b2,10) ' Generate a random tone on pin 1 using the low

' byte of the random number b2 as the note number.
goto loop ' Repeat the process

Page 56 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

READ location,variable

Read EEPROM location and store value in variable.

• Location is a variable/constant (0–255) that specifies which
location in the EEPROM to read from.

• Variable receives the value read from the EEPROM (0–255).

The EEPROM is used for both program storage (which builds
downward from address 254) and data storage (which builds
upward from address 0). To ensure that your program doesn’t
overwrite itself, read location 255 in the EEPROM before writing
any data. Location 255 holds the address of the last instruction in
your program. Therefore, your program can use any space below
the address given in location 255. For example, if location 255 holds
the value 100, then your program can use locations 0–99 for data.

Sample Program:

READ 255,b2 ' Get location of last program instruction.
loop:

b2 = b2 - 1 ' Decrement to next available EEPROM location
serin 0,N300,b3 ' Receive serial byte in b3
write b2,b3 ' Store received serial byte in next EEPROM location

if b2 > 0 then loop ' Get another byte if there's room left to store it.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 57

BASIC Stamp I

1

BASIC Instructions

RETURN

Return from subroutine. Return branches back to the address fol-
lowing the most recent Gosub instruction, at which point program
execution continues.

Return takes no parameters. For more information on using subrou-
tines, see the Gosub listing.

Sample Program:

for b4 = 0 to 10
gosub abc ' Save return address and then branch to abc.
next
abc:

pulsout 0,b4 ' Output a pulse on pin 0.
' Pulse length is b4 x 10 microseconds.

toggle 1 ' Toggle pin 1.
RETURN ' Return to instruction following gosub.

Page 58 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

REVERSE pin

Reverse the data direction of the given pin. If the pin is an input,
make it an output; if it’s an output, make it an input.

• Pin is a variable/constant (0–7) that specifies the I/O pin.

See the Input and Output commands for more information on config-
uring pins’ data directions.

Sample Program:

dir3 = 0 ' Make pin 3 an input.
REVERSE 3 ' Make pin 3 an output.
REVERSE 3 ' Make pin 3 an input.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 59

BASIC Stamp I

1

BASIC Instructions

SERIN pin,baudmode,(qualifier,qualifier,...)

SERIN pin,baudmode,{#}variable,{#}variable,...

SERIN pin, baudmode, (qualifier,qualifier,...), {#}variable, {#}variable,...

Set up a serial input port and then wait for optional qualifiers and/
or variables.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Baudmode is a variable/constant
(0–7) that specifies the serial port
mode. Baudmode can be either the #
or symbol shown in the table. The
other serial parameters are preset to
the most common format: no parity,
eight data bits, one stop bit, often
abbreviated N81. These cannot be changed.

• Qualifiers are optional variables/constants (0–255) which must
be received in exact order before execution can continue.

• Variables (optional) are used to store received data (0–255). If
any qualifiers are given, they must be satisfied before variables
can be filled. If a # character precedes a variable name, then Serin
will convert numeric text (e.g., numbers typed at a keyboard) into
a value to fill the variable.

Serin makes the specified pin a serial input port with the character-
istics set by baudmode. It receives serial data one byte at a time and
does one of two things with it:

• Compares it to a qualifier.

• Stores it to a variable.

In either case, the Stamp will do nothing else until all qualifiers have
been exactly matched in the specified order and all variables have
been filled. A single Serin instruction can include both variables to
fill and qualifiers to match.

Here are some examples:

SERIN 0,T300,b2

Symbol Baud Rate Polarity

0 T2400 2400 true
1 T1200 1200 true
2 T600 600 true
3 T300 300 true
4 N2400 2400 inverted
5 N1200 1200 inverted
6 N600 600 inverted
7 N300 300 inverted

Page 60 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

Stop the program until one byte of data is received serially (true
polarity, 300 baud) through pin 0. Store the received byte into
variable b2 and continue. For example, if the character “A” were
received, Serin would store 65 (the ASCII character code for “A”)
into b2.

SERIN 0, T1200,#w1

Stop the program until a a numeric string is received serially (true
polarity, 1200 baud) through pin 0. Store the value of the numeric
string into variable w1. For example, suppose the following text
were received: “XYZ: 576%.” Serin would ignore “XYZ: ” because
these are non-numeric characters. It would collect the characters
“5”, “7”, “6” up to the first non-numeric character, “%”. Serin would
convert the numeric string “576” into the corresponding value 576
and store it in w1. If the # before w1 were omitted, Serin would
receive only the first character, “X”, and store its ASCII character
code, 88, into w1.

SERIN 0,N2400,("A")

Stop the program until a byte of data is received serially (inverted
polarity, 2400 baud) through pin 0. Compare the received byte to
65, the ASCII value of the letter “A”. If it matches, continue the
program. If it doesn’t match, receive another byte and repeat the
comparison. The program will not continue until “A” is received.
For example, if Serin received “LIMIT 65,A”, program execution
would not continue until the final “A” was received.

SERIN 0,N2400,("SESAME"),b2,#b4

Stop the program until a string of bytes exactly matching “SESAME”
is received serially (inverted polarity, 2400 baud) through pin 0.
Once the qualifiers have been received, store the next byte into b2.
Then receive a numeric string, convert it to a value, and store it into
b4. For example, suppose Serin received, “...SESESAME! *****19*”.
It would ignore the string “...SE”, then accept the matching qualifier
string “SESAME”. Then Serin would put 33, the ASCII value of “!”,
into b2. It would ignore the non-numeric “*” characters, then store
the characters “1” and “9”. When Serin received the first non-
numeric character (“*”), it would convert the text “19” into the
value 19 and store it in b4. Then, having matched all qualifiers and

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 61

BASIC Stamp I

1

BASIC Instructions

filled all variables, Serin would permit the Stamp to go on to the next
instruction.

Speed Considerations. The Serin command itself is fast enough to
catch multiple bytes of data, no matter how rapidly the host
computer sends them. However, if your program receives data,
stores or processes it, then loops back to perform another Serin, it
may miss data or receive it incorrectly because of the time delay.
Use one or more of the following steps to compensate for this:

• Increase the number of stop bits at the sender from 1 to 2 (or
more, if possible).

• Reduce the baud rate.

• If the sender is operating under the control of a program, add
delays between transmissions.

• Reduce the amount of processing that the Stamp performs between
Serins to a bare minimum.

Receiving data from a PC. To
send data serially from your
PC to the Stamp, all you need is
a 22k resistor, some wire and
connectors, and terminal com-
munication software. Wire the
connector as shown in the dia-
gram for Serin. The wires shown
in gray disable your PC’s hard-
ware handshaking, which
would normally require addi-
tional connections to control the
flow of data. These aren’t re-
quired in communication with the Stamp, because you’re not likely
to be sending a large volume of data as you might to a modem
orprinter.

When you write programs to receive serial data using this kind of
hookup, make sure to specify “inverted” baudmodes, such as
N2400.

1

DB-9 Female (PC/AT and later)
(SOLDER SIDE)

5

113

DB-25 Male (PC XT)
(SOLDER SIDE)

22k
I/O pin (SERIN)

I/O pin (SEROUT)

Ground

I/O pin (SERIN)

I/O pin (SEROUT)

Ground

22k

Page 62 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

If you don’t have a terminal program, you can type and run the
following QBASIC program to configure the serial port (2400 baud,
N81) and transmit characters typed at the keyboard. QBASIC is the
PC dialect of BASIC that comes with DOS versions 5 and later.

QBASIC Program to Transmit Data:

' This program transmits characters typed at the keyboard out the PC's
' COM1: serial port. To end the program, press control-break.
' Note: in the line below, the "0" in "CD0,CS0..." is a zero.

OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR OUTPUT AS #1
CLS
Again:

theChar$ = INKEY$
IF theChar$ = "" then Goto Again
PRINT #1,theChar$;

GOTO Again

Sample Stamp Program:

' To use this program, download it to the Stamp. Connect
' your PC's com1: port output to Stamp pin 0 through a 22k resistor
' as shown in the diagram. Connect a speaker to Stamp pin 7 as
' shown in the Sound entry. Run your terminal software or the QBASIC
' program above. Configure your terminal software for 2400 baud,
' N81, and turn off hardware handshaking. The QBASIC
' program is already configured this way. Try typing random
' letters and numbers--nothing will happen until you enter
' "START" exactly as it appears in the Stamp program.
' Then you may type numbers representing notes and
' durations for the Sound command. Any non-numeric text
' you type will be ignored.

SERIN 0,N2400,("START") ' Wait for "START".
sound 7,(100,10) ' Acknowledging beep.

Again:
SERIN 0,N2400,#b2,#b3 ' Receive numeric text and

' convert to bytes.
sound 7,(b2,b3) ' Play corresponding sound.
goto Again ' Repeat.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 63

BASIC Stamp I

1

BASIC Instructions

SEROUT pin,baudmode,({#}data,{#}data,...)

Set up a serial output port and transmit data.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

• Baudmode is a variable/constant (0–15) that specifies the
serialport mode. Baudmode can be either the # or symbol shown
in the table. The other serial parameters are preset to the most
common format: no parity, eight data bits, one stop bit, often
abbreviated N81. These
cannot be changed.

• Data are byte
variables/constants (0–
255) that are output by
Serout. If preceded by
the # sign, data items
are transmitted as text
strings up to five
characters long.
Without the #, data
items are transmitted as
a single byte.

Serout makes the specified pin a serial output port with the charac-
teristics set by baudmode. It transmits the specified data in one of two
forms:

• A single-byte value.

• A text string of one to five characters.

Here are some examples:

SEROUT 0,N2400,(65)

Serout transmits the byte value 65 through pin 0 at 2400 baud,
inverted. If you receive this byte on a PC running terminal software,
the character “A” will appear on the screen, because 65 is the ASCII
code for “A”.

SEROUT 0,N2400,(#65)

Serout transmits the text string “65” through pin 0 at 2400 baud,
inverted. If you receive this byte on a PC running terminal software,

0 T2400 2400 true always driven
1 T1200 1200 true always driven
2 T600 600 true always driven
3 T300 300 true always driven
4 N2400 2400 inverted always driven
5 N1200 1200 inverted always driven
6 N600 600 inverted always driven
7 N300 300 inverted always driven
8 OT2400 2400 true open drain (driven high)
9 OT1200 1200 true open drain (driven high)

10 OT600 600 true open drain (driven high)
11 OT300 300 true open drain (driven high)
12 ON2400 2400 inverted open source (driven low)
13 ON1200 1200 inverted open source (driven low)
14 ON600 600 inverted open source (driven low)
15 ON300 300 inverted open source (driven low)

Symbol Baud Rate Polarity and Output Mode

Page 64 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

the text “65” will appear on the screen. When a value is preceded by
the # sign, Serout automatically converts it to a form that reads
correctly on a terminal screen.

When should you use the # sign? If you are sending data from the
Stamp to a terminal for people to read, use #. If you are sending data
to another Stamp, or to another computer for further processing,
it’s more efficient to omit the #.

Sending data to a PC. To send
data serially to your PC from
the Stamp, all you need is some
wire and connectors, and ter-
minal communication soft-
ware. Wire the connector as
shown in the Serout connections
in the diagram at right and use
the inverted baudmodes, such
as N2400. Although the Stamp’s
serial output can only switch
between 0 and +5 volts (not the
±10 volts of legal RS-232), most PCs receive it without problems.

If you don’t have a terminal program, you can type and run the
following QBASIC program to configure the serial port and receive
characters from the Stamp.

QBASIC Program to Receive Data:

' This program receives data transmitted by the Stamp through the PC's
' COM1: serial port and displays it on the screen. To end the program,
' press control-break. Note: in the line below, the "0" in "CD0,CS0..." is a zero.

OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR INPUT AS #1
CLS
Again:

theChar$ = INPUT$(1,#1)
PRINT theChar$;

GOTO Again

Open-drain/open-source signaling. The last eight configuration
options for Serout begin with “O” for open-drain or open-source

1

DB-9 Female (PC/AT and later)
(SOLDER SIDE)

5

113

DB-25 Male (PC XT)
(SOLDER SIDE)

22k
I/O pin (SERIN)

I/O pin (SEROUT)

Ground

I/O pin (SERIN)

I/O pin (SEROUT)

Ground

22k

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 65

BASIC Stamp I

1

BASIC Instructions

signaling. The diagram below shows how to use the open-drain
mode to connect two or more Stamps to a common serial output line
to form a network. You could also use the open-source mode, but
the resistor would have to be connected to ground, and a buffer
(non-inverting driver) substituted for the inverter to drive the PC.

To understand why you must use the “open” serial modes on a
network, consider what would happen if you didn’t. When none of
the Stamps are transmitting, all of their Serout pins are output-high.
Since all are at +5 volts, no current flows between the pins. Then a
Stamp transmits, and switches to output-low. With the other Stamps’
pins output-high, there’s a direct short from +5 volts to ground.
Current flows between the pins, possibly damaging them.

If the Stamps are all set for open-drain output, it’s a different story.
When the Stamps aren’t transmitting, their Serout pins are inputs,
effectively disconnected from the serial line. The resistor to +5 volts
maintains a high on the serial line. When a Stamp transmits, it pulls
the serial line low. Almost no current flows through the other
Stamps’ Serout pins, which are set to input. Even if two Stamps
transmit simultaneously, they can’t damage each other.

Sample Program:

abc:
pot 0,100,b2 ' Read potentiometer on pin 0.
SEROUT 1,N300,(b2) ' Send potentiometer

' reading over serial output.
goto abc ' Repeat the process.

Stamp
one

Stamp
two

Stamp
three +5

1k

1/6th of 74HCT04
(or other CMOS
inverter)

1 2

7 7

I/O pin

PC or
terminal

+5

14

7

Stamps transmitting serial data using
open-drain baudmode, e.g., OT2400

I/O pinI/O pin

Page 66 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

SLEEP seconds

Enter sleep mode for a specified number of seconds.

• Seconds is a variable/constant (1–65535) that specifies the
duration of sleep in seconds. The length of sleep can range from
2.3 seconds (see note below) to slightly over 18 hours. Power
consumption is reduced to about 20 µA, assuming no loads are
being driven.

Note: The resolution of Sleep is 2.304 seconds. Sleep rounds the
seconds up to the nearest multiple of 2.304. Sleep 1 causes 2.3
seconds of sleep, while Sleep 10 causes 11.52 seconds (5 x 2.304).

Sleep lets the Stamp turn itself off, then turn back on after a specified
number of seconds. The alarm clock that wakes the Stamp up is
called the watchdog timer. The watchdog is an oscillator built into
the BASIC interpreter. During sleep, the Stamp periodically wakes
up and adjusts a counter to determine how long it has been asleep.
If it isn’t time to wake up, the Stamp goes back to sleep.

To ensure accuracy of sleep intervals, the Stamp periodically com-
pares the period of the watchdog timer to the more accurate
resonator timebase. It calculates a correction factor that it uses
during sleep. Longer sleep intervals are accurate to ±1 percent.

If your Stamp application is driving loads during sleep, current will
be interrupted for about 18 ms when the Stamp wakes up every 2.3
seconds. The reason is that the reset that awakens the Stamp causes
all of the pins to switch to input mode for approximately 18 ms.
When the BASIC interpreter regains control, it restores the I/O
direction dictated by your program.

If you plan to use End, Nap, or Sleep in your programs, make sure that
your loads can tolerate these periodic power outages. The simplest
solution is to connect resistors high or low (to +5V or ground) as
appropriate to ensure a supply of current during reset.

Sample Program:

SLEEP 3600 ' Sleep for about 1 hour.
goto xyz ' Continue with program

' after sleeping.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 67

BASIC Stamp I

1

BASIC Instructions

SOUND pin,(note,duration,note,duration,...)

Change the specified pin to output, and generate square-wave
notes with given durations. The output pin should be connected as
shown in the diagram. You may sub-
stitute a resistor of 220 ohms or more
for the capacitor, but the speaker coil
will draw current even when the
speaker is silent.

• Pin is a variable/constant (0–7) that
specifies the I/O pin to use.

• Note(s) are variables/constants (0–255) which specify type and
frequency. Note 0 is silent for the given duration. Notes 1-127 are
ascending tones. Notes 128-255 are ascending white noises,
ranging from buzzing (128) to hissing (255).

• Duration(s) are variables/constants (1–255) which specify how
long (in units of 12 ms) to play each note.

The notes produced by Sound can vary in frequency from 94.8 Hz
(1) to 10,550 Hz (127). If you need to determine the frequency
corresponding to a given note value, or need to find the note value
that will give you best approximation for a given frequency, use the
equations below.

Sample Program:

for b2 = 0 to 256
SOUND 1,(25,10,b2,10) ‘ Generate a constant tone (25)

‘ followed by an ascending tone
‘ (b2). Both tones have the

next ‘ same duration(10).

from I/O pin
10µF
+

40Ω

Frequency (Hz) =
1

95 × 10−6 + 127 − Note()× 83×10−6()

Note = 127 −
1

Frequency (Hz) − 95 ×10−6

83 × 10−6

Page 68 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I BASIC Instructions

TOGGLE pin

Make pin an output and toggle state.

• Pin is a variable/constant (0–7) that specifies the I/O pin to use.

Sample Program:

for b2 = 1 to 25
TOGGLE 5 'Toggle state of pin 5.
next

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 69

BASIC Stamp I

1

BASIC Instructions

WRITE location,data

Store data in EEPROM location.

• Location is a variable/constant (0–255) that specifies which
EEPROM location to write to.

• Data is a variable/constant (0–255) that is stored in the EEPROM
location.

The EEPROM is used for both program storage (which builds
downward from address 254) and data storage (which builds
upward from address 0). To ensure that your program doesn’t
overwrite itself, read location 255 in the EEPROM before writing
any data. Location 255 holds the address of the first instruction in
your program. Therefore, your program can use any space below
the address given in location 255. For example, if location 255 holds
the value 100, then your program can use locations 0–99 for data.

Sample Program:

read 255,b2 ' Get location of last
' program instruction.

loop:
b2 = b2 - 1 ' Decrement to next

' available EEPROM location
serin 0,N300,b3 ' Receive serial byte in b3.
WRITE b2,b3 ' Store received serial

' byte in next EEPROM location.
if b2 > 0 then loop ' Get another byte if there's room.

Page 70 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 71

BASIC Stamp I Application Notes

1

1: LCD User-Interface Terminal

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to operate as a simple user-interface terminal.

Background. Many systems use a central host computer to control
remote functions. At various locations, users communicate with the
main system via small terminals that display system status and accept
inputs. The BASIC Stamp’s ease of programming and built-in support
for serial communications make it a good candidate for such user-
interface applications.

The liquid-crystal display (LCD) used in this project is based on the
popular Hitachi 44780 controller IC. These chips are at the heart of
LCD’s ranging in size from two lines of four characters (2x4) to 2x40.

How it works. When power is first applied, the BASIC program
initializes the LCD. It sets the display to print from left to right, and
enables an underline cursor. To eliminate any stray characters, the
program clears the screen.

After initialization, the program enters a loop waiting for the arrival of
a character via the 2400-baud RS-232 interface. When a character
arrives, it is checked against a short list of special characters (backspace,
control-C, and return). If it is not one of these, the program prints it on
the display, and re-enters the waiting-for-data loop.

If a backspace is received, the program moves the LCD cursor back one

Schematic to accompany program TERMINAL.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5
10k

1k

SWITCHES 0–3

22k1k

4
14

13
12
11

SERIAL IN

SERIAL OUT

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

Page 72 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

space, prints a blank (space) character to blot out the character that was
there, and then moves back again. The second move-back step is
necessary because the LCD automatically advances the cursor.

If a control-C is received, the program issues a clear instruction to the
LCD, which responds by filling the screen with blanks, and returning
the cursor to the leftmost position.

If a return character is received, the program interprets the message as
a query requiring a response from the user. It enters a loop waiting for
the user to press one of the four pushbuttons. When he does, the
program sends the character (“0” through “3”) representing the button
number back to the host system. It then re-enters its waiting loop.

Because of all this processing, the user interface cannot receive charac-
ters sent rapidly at the full baud rate. The host program must put a little
breathing space between characters; perhaps a 3-millisecond delay. If
you reduce the baud rate to 300 baud and set the host terminal to 1.5 or
2 stop bits, you may avoid the need to program a delay.

At the beginning of the program, during the initialization of the LCD,
you may have noticed that several instructions are repeated, instead of
being enclosed in for/next loops. This is not an oversight. Watching the
downloading bar graph indicated that the repeated instructions actu-
ally resulted in a more compact program from the Stamp’s point of
view. Keep an eye on that graph when running programs; it a good
relative indication of how much program space you’ve used. The
terminal program occupies about two-thirds of the Stamp’s EEPROM.

From an electronic standpoint, the circuit employs a couple of tricks.
The first involves the RS-232 communication. The Stamp’s processor, a
PIC 16C56, is equipped with hefty static-protection diodes on its input/
output pins. When the Stamp receives RS-232 data, which typically
swings between -12 and +12 volts (V), these diodes serve to limit the
voltage actually seen by the PIC’s internal circuitry to 0 and +5V. The
22k resistor limits the current through the diodes to prevent damage.

Sending serial output without an external driver circuit exploits an-
other loophole in the RS-232 standard. While most RS-232 devices

1: LCD User-Interface Terminal

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 73

BASIC Stamp I Application Notes

1

expect the signal to swing between at least -3 and +3V, most will accept
the 0 and +5V output of the PIC without problems.

This setup is less noise-immune than circuits that play by the RS-232
rules. If you add a line driver/receiver such as a Maxim MAX232,
remember that these devices also invert the signals. You’ll have to
change the baud/mode parameter in the instructions serin and serout
to T2400, where T stands for true signal polarity. If industrial-strength
noise immunity is required, or the interface will be at the end of a mile-
long stretch of wire, use an RS-422 driver/receiver. This will require the
same changes to serin and serout.

Another trick allows the sharing of input/output pins between the LCD
and the pushbuttons. What happens if the user presses the buttons
while the LCD is receiving data? Nothing. The Stamp can sink enough
current to prevent the 1k pullup resistors from affecting the state of its
active output lines. And when the Stamp is receiving input from the
switches, the LCD is disabled, so its data lines are in a high-impedance
state that’s the next best thing to not being there. These facts allow the
LCD and the switches to share the data lines without interference.

Finally, note that the resistors are shown on the data side of the
switches, not on the +5V side. This is an inexpensive precaution against
damage or interference due to electrostatic discharge from the user’s
fingertips. It’s not an especially effective precaution, but the price is
right.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Terminal.bas
' The Stamp serves as a user-interface terminal. It accepts text via RS-232 from a
' host, and provides a way for the user to respond to queries via four pushbuttons.

Symbol S_in = 7 ' Serial data input pin
Symbol S_out = 6 ' Serial data output pin
Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction
Symbol keys = b0 ' Variable holding # of key pressed.
Symbol char = b3 ' Character sent to LCD.

1: LCD User-Interface Terminal

Page 74 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Symbol Sw_0 = pin0 ' User input switches
Symbol Sw_1 = pin1 ' multiplexed w/LCD data lines.
Symbol Sw_2 = pin2
Symbol Sw_3 = pin3

' Set up the Stamp’s I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.

' Initialize the LCD in accordance with Hitachi’s instructions for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send data three times
pause 10 ' to initialize LCD.
pulsout E,1
pause 10
pulsout E,1
pause 10
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 14 ' Set up LCD in accordance with
gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn on cursor and enable
gosub wr_LCD ' left-to-right printing.
let char = 1 ' Clear the display.
gosub wr_LCD
high RS ' Prepare to send characters.

' Main program loop: receive data, check for backspace, and display data on LCD.
main: serin S_in,N2400,char ' Main terminal loop.

goto bksp
out: gosub wr_LCD

goto main

' Write the ASCII character in b3 to LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

' Backspace, rub out character by printing a blank.

1: LCD User-Interface Terminal

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 75

BASIC Stamp I Application Notes

1

bksp: if char > 13 then out ' Not a bksp or cr? Output character.
if char = 3 then clear ' Ctl-C clears LCD screen.
if char = 13 then cret ' Carriage return.
if char <> 8 then main ' Reject other non-printables.
gosub back
let char = 32 ' Send a blank to display
gosub wr_LCD
gosub back ' Back up to counter LCD’s auto-

' increment.
goto main ' Get ready for another transmission.

back: low RS ' Change to instruction register.
let char = 16 ' Move cursor left.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

clear: low RS ' Change to instruction register.
let b3 = 1 ' Clear the display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
goto main

' If a carriage return is received, wait for switch input from the user. The host
' program (on the other computer) should cooperate by waiting for a reply before
' sending more data.
cret: let dirs = %01110000 ' Change LCD data lines to input.
loop: let keys = 0

if Sw_0 = 1 then xmit ' Add one for each skipped key.
let keys = keys + 1
if Sw_1 = 1 then xmit
let keys = keys + 1
if Sw_2 = 1 then xmit
let keys = keys + 1
if Sw_3 = 1 then xmit
goto loop

xmit: serout S_out,N2400,(#keys,10,13)
let dirs = %01111111 ' Restore I/O pins to original state.
goto main

1: LCD User-Interface Terminal

Page 76 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 77

BASIC Stamp I Application Notes

1

2: Interfacing an A/D Convertor

Introduction. This application note presents the hardware and soft-
ware required to interface an 8-bit serial analog-to-digital converter to
the Parallax BASIC Stamp.

Background. The BASIC Stamp's instruction pot performs a limited
sort of analog-to-digital conversion. It lets you interface nearly any kind
of resistive sensor to the Stamp with a minimum of difficulty. However,
many applications call for a true voltage-mode analog-to-digital con-
verter (ADC). One that’s particularly suited to interfacing with the
Stamp is the National Semiconductor ADC0831, available from Digi-
Key, among others.

Interfacing the ’831 requires only three input/output lines, and of these,
two can be multiplexed with other functions (or additional ’831’s). Only
the chip-select (CS) pin requires a dedicated line. The ADC’s range of
input voltages is controlled by the VREF and VIN(–) pins. VREF sets the
voltage at which the ADC will return a full-scale output of 255, while
VIN(–) sets the voltage that will return 0.

In the example application, VIN(–) is at ground and VREF is at +5;
however, these values can be as close together as 1 volt without harming
the device’s accuracy or linearity. You may use diode voltage references
or trim pots to set these values.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

1k

ADC
0831

1

2

3

4

8

7

6

5

CS

Vin(+)

Vin(–)

GND

Vcc

CLK

DO

Vref

0–5V in

SERIAL
OUT

Schematic to accompany program AD_CONV.BAS.

Page 78 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' PROGRAM: ad_conv.bas
' BASIC Stamp program that uses the National ADC0831 to acquire analog data and
' output it via RS-232.

Symbol CS = 0
Symbol AD = pin1
Symbol CLK = 2
Symbol S_out = 3
Symbol data = b0
Symbol i = b2

setup: let pins = 255 ' Pins high (deselect ADC).
let dirs = %11111101 ' S_out, CLK, CS outputs; AD

' input.

loop: gosub conv ' Get the data.
serout S_out,N2400,(#b0,13,10) ' Send data followed by a return

How it works. The sample program reads the voltage at the ’831’s input
pin every 2 seconds and reports it via a 2400-baud serial connection. The
subroutine conv handles the details of getting data out of the ADC. It
enables the ADC by pulling the CS line low, then pulses the clock (CLK)
line to signal the beginning of a conversion. The program then enters a
loop in which it pulses CLK, gets the bit on pin AD, adds it to the received
byte, and shifts the bits of the received byte to the left. Since BASIC
traditionally doesn’t include bit-shift operations, the program multi-
plies the byte by 2 to perform the shift.

When all bits have been shifted into the byte, the program turns off the
ADC by returning CS high. The subroutine returns with the conversion
result in the variable data. The whole process takes about 20 millisec-
onds.

Modifications. You can add more ’831’s to the circuit as follows:
Connect each additional ADC to the same clock and data lines, but
assign it a separate CS pin. Modify the conv subroutine to take the
appropriate CS pin low when it needs to acquire data from a particular
ADC. That’s it.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

2: Interfacing an A/D Convertor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 79

BASIC Stamp I Application Notes

1

' and linefeed.
pause 2000 ' Wait 2 seconds
goto loop ' Do it forever.

conv: low CLK ' Put clock line in starting state.
low CS ' Select ADC.
pulsout CLK, 1 ' 10 us clock pulse.
let data = 0 ' Clear data.
for i = 1 to 8 ' Eight data bits.
let data = data * 2 ' Perform shift left.
pulsout CLK, 1 ' 10 us clock pulse.
let data = data + AD ' Put bit in LSB of data.
next ' Do it again.
high CS ' Deselect ADC when done.
return

2: Interfacing an A/D Convertor

Page 80 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 81

BASIC Stamp I Application Notes

1

3: Hardware Solution for Keypads

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to read a keypad and display keypresses on
a liquid-crystal display.

Background. Many controller applications require a keypad to allow
the user to enter numbers and commands. The usual way to interface a
keypad to a controller is to connect input/output (I/O) bits to row and
column connections on the keypad. The keypad is wired in a matrix
arrangement so that when a key is pressed one row is shorted to one
column. It’s relatively easy to write a routine to scan the keypad, detect
keypresses, and determine which key was pressed.

The trouble is that a 16-key pad requires a minimum of eight bits (four
rows and four columns) to implement this approach. For the BASIC
Stamp, with a total of only eight I/O lines, this may not be feasible, even
with clever multiplexing arrangements. And although the program-
ming to scan a keypad is relatively simple, it can cut into the Stamp’s 255
bytes of program memory.

An alternative that conserves both I/O bits and program space is to use
the 74C922 keypad decoder chip. This device accepts input from a 16-
key pad, performs all of the required scanning and debouncing, and

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5

4
14

13
12
11

10k
all

+5
Matrix keypad (pressing

a key shorts a row
connection to a column)

available

1x16-character LCD module, Hitachi 44780 controller

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

.1µF

1µF

74C922

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

row 3

row 4

scan

debounce

col 4

col 3

gnd

d0

d1

d2

d3

out enable

data avail

col 1

col 2

Vccrow 1

row 2

Schematic to accompany
program KEYPAD.BAS.

Page 82 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 3: Hardware Solution for Keypads

outputs a “data available” bit and 4 output bits representing the
number of the key pressed from 0 to 15. A companion device, the
74C923, has the same features, but reads a 20-key pad and outputs 5
data bits.

Application. The circuit shown in the figure interfaces a keypad and
liquid-crystal display (LCD) module to the BASIC Stamp, leaving two
I/O lines free for other purposes, such as bidirectional serial communi-
cation. As programmed, this application accepts keystrokes from 16
keys and displays them in hexadecimal format on the LCD.

When the user presses a button on the keypad, the corresponding hex
character appears on the display. When the user has filled the display
with 16 characters, the program clears the screen.

The circuit makes good use of the electrical properties of the Stamp, the
LCD module, and the 74C922. When the Stamp is addressing the LCD,
the 10k resistors prevent keypad activity from registering. The Stamp
can easily drive its output lines high or low regardless of the status of
these lines. When the Stamp is not addressing the LCD, its lines are
configured as inputs, and the LCD’s lines are in a high-impedance state
(tri-stated). The Stamp can then receive input from the keypad without
interference.

The program uses the button instruction to read the data-available line
of the 74C922. The debounce feature of button is unnecessary in this
application because the 74C922 debounces its inputs in hardware;
however, button provides a professional touch by enabling delayed
auto-repeat for the keys.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Keypad.bas
' The Stamp accepts input from a 16-key matrix keypad with the help of
' a 74C922 keypad decoder chip.
Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 83

BASIC Stamp I Application Notes

1

3: Hardware Solution for Keypads

Symbol char = b1 ' Character sent to LCD.
Symbol buttn = b3 ' Workspace for button command.
Symbol lngth = b5 ' Length of text appearing on LCD.
Symbol temp = b7 ' Temporary holder for input character.

' Set up the Stamp's I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.
let buttn = 0
let lngth = 0
gosub i_LCD
gosub clear

keyin: let dirs = %01100000 ' Set up I/O directions.
loop: button 4,1,50,10,buttn,0,nokey ' Check pin 4 (data available) for

' keypress.
lngth = lngth + 1 ' Key pressed: increment position

counter.
let temp = pins & %00001111 ' Strip extra bits to leave only key data.
if temp > 9 then hihex ' Convert 10 thru 15 into A thru F (hex).
let temp = temp + 48 ' Add offset for ASCII 0.

LCD: let dirs = %01111111 ' Get ready to output to LCD.
if lngth > 16 then c_LCD ' Screen full? Clear it.

cont: let char = temp ' Write character to LCD.
gosub wr_LCD

nokey: pause 10 ' Short delay for nice auto-repeat
' speed.

goto keyin ' Get ready for next key.

hihex: let temp = temp + 55 ' Convert numbers 10 to 15 into A - F.
goto LCD

c_LCD: let lngth = 1 ' If 16 characters are showing on LCD,
gosub clear ' clear the screen and print at left edge.
goto cont

' Initialize the LCD in accordance with Hitachi's instructions
' for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send above data three times
pause 10 ' to initialize LCD.
pulsout E,1
pulsout E,1
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 12 ' Set up LCD in accordance w/

Page 84 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn off cursor, enable
gosub wr_LCD ' left-to-right printing.
high RS ' Prepare to send characters.
return

' Write the ASCII character in b3 to the LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

' Clear the LCD screen.
clear: low RS ' Change to instruction register.

let char = 1 ' Clear display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

3: Hardware Solution for Keypads

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 85

BASIC Stamp I Application Notes

1

4: Controlling and Testing Servos

Introduction. This application note presents a program in PBASIC that
enables the BASIC Stamp to control pulse-width proportional servos
and measure the pulse width of other servo drivers.

Background. Servos of the sort used in radio-controlled airplanes are
finding new applications in home and industrial automation, movie
and theme-park special effects, and test equipment. They simplify the
job of moving objects in the real
world by eliminating much of the
mechanical design. For a given sig-
nal input, you get a predictable
amount of motion as an output.

Figure 1 shows a typical servo. The
three wires are +5 volts, ground,
and signal. The output shaft accepts
a wide variety of prefabricated disks
and levers. It is driven by a geared-
down motor and rotates through 90
to 180 degrees. Most servos can ro-
tate 90 degrees in less than a half second. Torque, a measure of the
servo’s ability to overcome mechanical resistance (or lift weight, pull
springs, push levers, etc.), ranges from 20 to more than 100 inch-ounces.

To make a servo move, connect it to a 5-volt power supply capable of
delivering an ampere or more of peak current, and supply a positioning

Figure 1. A typical servo.

Figure 2. Schematic to accompany program SERVO.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2 3 1

10k
(contrast)

6
5 7 8 9 10

+5
10k

1k

Toggle Function

4
14

13
12
11

Servo signal in

Servo signal out

1x16-character LCD module, Hitachi 44780 controller

Vdd Vo R/WVss

DB4
DB5
DB6
DB7

DB0 DB1 DB2 DB3E
RS

Page 86 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

signal. The signal is generally a 5-volt, positive-going pulse between 1
and 2 milliseconds (ms) long, repeated about 50 times per second. The
width of the pulse determines the position of the servo. Since servos’
travel can vary, there isn’t a definite correspondence between a given
pulse width and a particular servo angle, but most servos will move to
the center of their travel when receiving 1.5-ms pulses.

Servos are closed-loop devices. This means that they are constantly
comparing their commanded position (proportional to the pulse width)
to their actual position (proportional to the resistance of a potentiom-
eter mechanically linked to the shaft). If there is more than a small
difference between the two, the servo’s electronics will turn on the
motor to eliminate the error. In addition to moving in response to
changing input signals, this active error correction means that servos
will resist mechanical forces that try to move them away from a
commanded position. When the servo is unpowered or not receiving
positioning pulses, you can easily turn the output shaft by hand. When
the servo is powered and receiving signals, it won’t budge from its
position.

Application. Driving servos with the BASIC Stamp is simplicity itself.
The instruction pulsout pin, time generates a pulse in 10-microsecond
(µs) units, so the following code fragment would command a servo to
its centered position and hold it there:

servo: pulsout 0,150
pause 20
goto servo

The 20-ms pause ensures that the program sends the pulse at the
standard 50 pulse-per-second rate.

The program listing is a diagnostic tool for working with servos. It has
two modes, pulse measurement and pulse generation. Given an input
servo signal, such as from a radio-control transmitter/receiver, it
displays the pulse width on a liquid-crystal display (LCD). A display of
“Pulse Width: 150” indicates a 1.5-ms pulse. Push the button to toggle
functions, and the circuit supplies a signal that cycles between 1 and 2
ms. Both the pulse input and output functions are limited to a resolution

4: Controlling and Testing Servos

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 87

BASIC Stamp I Application Notes

1

4: Controlling and Testing Servos

of 10µs. For most servos, this equates to a resolution of better than 1
degree of rotation.

The program is straightforward Stamp BASIC, but it does take advan-
tage of a couple of the language’s handy features. The first of these is the
EEPROM directive. EEPROM address,data allows you to stuff tables of
data or text strings into EEPROM memory. This takes no additional
program time, and only uses the amount of storage required for the
data. After the symbols, the first thing that the listing does is tuck a
couple of text strings into the bottom of the EEPROM. When the
program later needs to display status messages, it loads the text strings
from EEPROM.

The other feature of the Stamp’s BASIC that the program exploits is the
ability to use compound expressions in a let assignment. The routine
BCD (for binary-coded decimal) converts one byte of data into three
ASCII characters representing values from 0 (represented as “000”) to
255.

To do this, BCD performs a series of divisions on the byte and on the
remainders of divisions. For example, when it has established how
many hundreds are in the byte value, it adds 48, the ASCII offset for
zero. Take a look at the listing. The division (/) and remainder (//)
calculations happen before 48 is added. Unlike larger BASICs which
have a precedence of operators (e.g., multiplication is always before
addition), the Stamp does its math from left to right. You cannot use
parentheses to alter the order, either.

If you’re unsure of the outcome of a calculation , use the debug directive
to look at a trial run, like so:

let BCDin = 200
let huns = BCDin/100+48
debug huns

When you download the program to the Stamp, a window will appear
on your computer screen showing the value assigned to the variable
huns (50). If you change the second line to let huns = 48+BCDin/100,
you’ll get a very different result (2).

Page 88 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 4: Controlling and Testing Servos

By the way, you don’t have to use let, but it will earn you Brownie points
with serious computer-science types. Most languages other than BASIC
make a clear distinction between equals as in huns = BCDin/100+48
and if BCDin = 100 then...

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' PROGRAM: Servo.bas
' The Stamp works as a servo test bench. It provides a cycling servo signal
' for testing, and measures the pulse width of external servo signals.

Symbol E = 5 ' Enable pin, 1 = enabled
Symbol RS = 4 ' Register select pin, 0 = instruction
Symbol char = b0 ' Character sent to LCD.
Symbol huns = b3 ' BCD hundreds
Symbol tens = b6 ' BCD tens
Symbol ones = b7 ' BCD ones
Symbol BCDin = b8 ' Input to BCD conversion/display
routine.
Symbol buttn = b9 ' Button workspace
Symbol i = b10 ' Index counter

' Load text strings into EEPROM at address 0. These will be used to display
' status messages on the LCD screen.
EEPROM 0,("Cycling... Pulse Width: ")

' Set up the Stamp's I/O lines and initialize the LCD.
begin: let pins = 0 ' Clear the output lines

let dirs = %01111111 ' One input, 7 outputs.
pause 200 ' Wait 200 ms for LCD to reset.

' Initialize the LCD in accordance with Hitachi's instructions
' for 4-bit interface.
i_LCD: let pins = %00000011 ' Set to 8-bit operation.

pulsout E,1 ' Send above data three times
pause 10 ' to initialize LCD.
pulsout E,1
pulsout E,1
let pins = %00000010 ' Set to 4-bit operation.
pulsout E,1 ' Send above data three times.
pulsout E,1
pulsout E,1
let char = 12 ' Set up LCD in accordance w/

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 89

BASIC Stamp I Application Notes

1

gosub wr_LCD ' Hitachi instruction manual.
let char = 6 ' Turn off cursor, enable
gosub wr_LCD ' left-to-right printing.
high RS ' Prepare to send characters.

' Measure the width of input pulses and display on the LCD.
mPulse: output 3

gosub clear ' Clear the display.
for i = 11 to 23 ' Read "Pulse Width:" label
 read i, char
 gosub wr_LCD ' Print to display
next
pulsin 7, 1, BCDin ' Get pulse width in 10 us units.
gosub BCD ' Convert to BCD and display.
pause 500
input 3 ' Check button; cycle if down.
button 3,1,255,10,buttn,1,cycle
goto mPulse ' Otherwise, continue measuring.

' Write the ASCII character in b3 to LCD.
wr_LCD: let pins = pins & %00010000

let b2 = char/16 ' Put high nibble of b3 into b2.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable pin.
let b2 = char & %00001111 ' Put low nibble of b3 into b2.
let pins = pins & %00010000 ' Clear 4-bit data bus.
let pins = pins | b2 ' OR the contents of b2 into pins.
pulsout E,1 ' Blip enable.
return

clear: low RS ' Change to instruction register.
let char = 1 ' Clear display.
gosub wr_LCD ' Write instruction to LCD.
high RS ' Put RS back in character mode.
return

' Convert a byte into three ASCII digits and display them on the LCD.
' ASCII 48 is zero, so the routine adds 48 to each digit for display on the LCD.
BCD: let huns= BCDin/100+48 ' How many hundreds?

let tens= BCDin//100 ' Remainder of #/100 = tens+ones.
let ones= tens//10+48 ' Remainder of (tens+ones)/10 = ones.
let tens= tens/10+48 ' How many tens?
let char= huns ' Display three calculated digits.
gosub wr_LCD
let char = tens
gosub wr_LCD
let char = ones
gosub wr_LCD
return

4: Controlling and Testing Servos

Page 90 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Cycle the servo back and forth between 0 and 90 degrees. Servo moves slowly ' in
one direction (because of 20-ms delay between changes in pulse width) and quickly
' in the other. Helps diagnose stuck servos, dirty feedback pots, etc.
cycle: output 3

gosub clear
for i = 0 to 9 ' Get "Cycling..." string and
 read i, char ' display it on LCD.
 gosub wr_LCD
next i

reseti: let i = 100 ' 1 ms pulse width.
cyloop: pulsout 6,i ' Send servo pulse.

pause 20 ' Wait 1/50th second.
let i = i + 2 ' Move servo.
if i > 200 then reseti ' Swing servo back to start position.
input 3 ' Check the button; change function if

' down.
button 3,1,255,10,buttn,1,mPulse
goto cyloop ' Otherwise, keep cycling.

4: Controlling and Testing Servos

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 91

BASIC Stamp I Application Notes

1

5: Practical Pulse Measurements

Introduction. This application note explores several applications for
the BASIC Stamp's unique pulsin command, which measures the
duration of incoming positive or negative pulses in 10-microsecond
units.

Background. The BASIC Stamp’s pulsin command measures the width
of a pulse, or the interval between two pulses. Left at that, it might seem
to have a limited range of obscure uses. However, pulsin is the key to
many kinds of real-world interfacing using simple, reliable sensors.
Some possibilities include:

tachometer
speed trap
physics demonstrator
capacitance checker
duty cycle meter
log input analog-to-digital converter

Pulsin works like a stopwatch that keeps time in units of 10 microsec-
onds (µs). To use it, you must specify which pin to monitor, when to
trigger on (which implies when to trigger off), and where to put the
resulting 16-bit time measurement. The syntax is as follows:

pulsin pin, trigger condition, variable

waiting to trigger

triggered on

triggered off

6924 µs

w3 holds 692w3 holds 0

Figure 1. Timing diagram for pulsin 7,0,w3 .

Page 92 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

Pin is a BASIC Stamp input/output pin (0 to 7). Trigger condition is a
variable or constant (0 or 1) that specifies the direction of the transition
that will start the pulsin timer. If trigger is 0, pulsin will start measuring
when a high-to-low transition occurs, because 0 is the edge’s destina-
tion. Variable can be either a byte or word variable to hold the timing
measurement. In most cases, a word variable is called for, because
pulsin produces 16-bit results.

Figure 1 shows how pulsin works. The waveform represents an input
at pin 7 that varies between ground and +5 volts (V).

A smart feature of pulsin is its ability to recognize a no-pulse or out-of-
range condition. If the specified transition doesn’t occur within 0.65535
seconds (s), or if the pulse to be measured is longer than 0.65535 s, pulsin
will give up and return a 0 in the variable. This prevents the program
from hanging up when there’s no input or out-of-range input.

Let’s look at some sample applications for pulsin, starting with one
inspired by the digital readout on an exercise bicycle: pulsin as a
tachometer.

Tachometer. The most obvious way to measure the speed of a wheel
or shaft in revolutions per minute (rpm) is to count the number of

Figure 2. Schematic to accompany listing 1, TACH.BAS.

Q

Q

CLK

D

1/2 4013

11

9

13

12

(ground unused
inputs, pins 8 & 10)

1k

+5

+5

Hall-effect switch
UGN3113U

or
equivalent

To BASIC Stamp
pulsin pin

Magnet on
rotating
shaft or disk

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 93

BASIC Stamp I Application Notes

1

revolutions that occur during 1 minute. The trouble is, the user prob-
ably wouldn’t want to wait a whole minute for the answer.

For a continuously updated display, we can use pulsin to measure the
time the wheel takes to make one complete revolution. By dividing this
time into 60 seconds, we get a quick estimate of the rpm. Listing 1 is a
tachometer program that works just this way. Figure 2 is the circuit that
provides input pulses for the program. A pencil-eraser-sized magnet
attached to the wheel causes a Hall-effect switch to generate a pulse
every rotation.

We could use the Hall switch output directly, by measuring the interval
between positive pulses, but we would be measuring the period of
rotation minus the pulses. That would cause small errors that would be
most significant at high speeds. The flip-flop, wired to toggle with each
pulse, eliminates the error by converting the pulses into a train of square
waves. Measuring either the high or low interval will give you the
period of rotation.

Note that listing 1 splits the job of dividing the period into 60 seconds
into two parts. This is because 60 seconds expressed in 10-µs units is 6
million, which exceeds the range of the Stamp’s 16-bit calculations. You
will see this trick, and others that work around the limits of 16-bit math,
throughout the listings.

Using the flip-flop’s set/reset inputs, this circuit and program could
easily be modified to create a variety of speed-trap instruments. A steel
ball rolling down a track would encounter two pairs of contacts to set
and reset the flip-flop. Pulsin would measure the interval and compute
the speed for a physics demonstration (acceleration). More challenging
setups would be required to time baseballs, remote-control cars or
aircraft, bullets, or model rockets.

The circuit could also serve as a rudimentary frequency meter. Just
divide the period into 1 second instead of 1 minute.

Duty cycle meter. Many electronic devices vary the power they deliver
to a load by changing the duty cycle of a waveform; the proportion of
time that the load is switched fully on to the time it is fully off. This

5: Practical Pulse Measurements

Page 94 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

approach, found in light dimmers, power supplies, motor controls and
amplifiers, is efficient and relatively easy to implement with digital
components. Listing 2 measures the duty cycle of a repetitive pulse
train by computing the ratio of two pulsin readings and presenting
them as a percentage. A reading approaching 100 percent means that
the input is mostly on or high. The output of figure 2’s flip-flop is 50
percent. The output of the Hall switch in figure 2 was less than 10
percent when the device was monitoring a benchtop drill press.

Capacitor checker. The simple circuit in figure 3 charges a capacitor,
and then discharges it across a resistance when the button is pushed.
This produces a brief pulse for pulsin to measure. Since the time
constant of the pulse is determined by resistance (R) times capacitance
(C), and R is fixed at 10k, the width of the pulse tells us C. With the
resistance values listed, the circuit operates over a range of .001 to 2.2 µF.
You may substitute other resistors for other ranges of capacitance; just

be sure that the charging resistor (100k in this case) is about 10 times the
value of the discharge resistor. This ensures that the voltage at the
junction of the two resistors when the switch is held down is a definite
low (0) input to the Stamp.

Log-input analog-to-digital converter (ADC). Many sensors have
convenient linear outputs. If you know that an input of 10 units

+5

Cunk

100k

10k

Press to
test To BASIC Stamp

pulsin pin

Figure 3. Schematic for listing 3, CAP.BAS.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 95

BASIC Stamp I Application Notes

1

5: Practical Pulse Measurements

(degrees, pounds, percent humidity, or whatever) produces an output
of 1 volt, then 20 units will produce 2 volts. Others, such as thermistors

and audio-taper potentiometers, produce logarithmic outputs. A Radio
Shack thermistor (271-110) has a resistance of 18k at 10° C and 12k at
20°C. Not linear, and not even the worst cases!

While it’s possible to straighten out a log curve in software, it’s often

easier to deal with it in hardware. That’s where figure 4 comes in. The
voltage-controlled oscillator of the 4046 phase-locked loop chip, when

Figure 4. Schematic for listing 4, VCO.BAS.

Fin

1/2 4046
To BASIC Stamp
pulsin pin

inh
5

1M

10k0.001µF

Input
voltage

outV9 4

cap

cap

6

7

Fmin

Fmax

12

11

Input voltage

0

250

500

750

1000

1250

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

O
ut

pu
t v

al
ue

Figure 5. Log response curve of the VCO.

Page 96 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 5: Practical Pulse Measurements

wired as shown, has a log response curve. If you play this curve against
a log input, you can effectively straighten the curve. Figure 5 is a plot of
the output of the circuit as measured by the pulsin program in listing 4.
It shows the characteristic log curve.

The plot points out another advantage of using a voltage-controlled
oscillator as an ADC; namely, increased resolution. Most inexpensive
ADCs provide eight bits of resolution (0 to 255), while the VCO
provides the equivalent of 10 bits (0 to 1024+). Admittedly, a true ADC
would provide much better accuracy, but you can’t touch one for
anywhere near the 4046’s sub-$1 price.

The 4046 isn’t the only game in town, either. Devices that can convert
analog values, such as voltage or resistance, to frequency or pulse width
include timers (such as the 555) and true voltage-to-frequency convert-
ers (such as the 9400). For sensors that convert some physical property
such as humidity or proximity into a variable capacitance or induc-
tance, pulsin is a natural candidate for sampling their output via an
oscillator or timer.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

A Note about the Program Listings
All of the listings output results as serial data. To receive it, connect Stamp pin 0 to your
PC’s serial input, and Stamp ground to signal ground. On 9-pin connectors, pin 2 is
serial in and pin 5 is signal ground; on 25-pin connectors, pin 3 is serial in and pin 7 is
signal ground. Set terminal software for 8 data bits, no parity, 1 stop bit.

' Listing 1: TACH.BAS
' The BASIC Stamp serves as a tachometer. It accepts pulse input through pin 7,
' and outputs rpm measurements at 2400 baud through pin 0.

input 7
output 0

Tach: pulsin 7,1,w2 ' Read positive-going pulses on pin 7.
let w2 = w2/100 ' Dividing w2/100 into 60,000 is the

' same as dividing
let w2 = 60000/w2 ' w2 into 6,000,000 (60 seconds in 10

' us units).

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 97

BASIC Stamp I Application Notes

1

' Transmit data followed by carriage return and linefeed.
serout 0,N2400,(#w2," rpm",10,13)
pause 1000 ' Wait 1 second between readings
goto Tach

' Listing 3: CAP.BAS
' The BASIC Stamp estimates the value of a capacitor by the time required for it to
' discharge through a known resistance.

input 7
output 0

Cap: pulsin 7,1,w1
if w1 = 0 then Cap ' If no pulse, try again.
if w1 > 6553 then Err ' Avoid overflows.
let w1 = w1*10
let w1 = w1/14 ' Apply calibration value.
if w1 > 999 then uF ' Use uF for larger caps.
serout 0,N2400,(#w1," nF",10,13)
goto Cap

uF: let b4 = w1/1000 ' Value left of decimal point.
let b6 = w1//1000 ' Value right of decimal point.
serout 0,N2400,(#b4,".",#b6," uF",10,13)
goto Cap

' Listing 2: DUTY.BAS
' The BASIC Stamp calculates the duty cycle of a repetitive pulse train.
' Pulses in on pin 7; data out via 2400-baud serial on pin 0.

input 7
output 0

Duty: pulsin 7,1,w2 ' Take positive pulse sample.
if w2 > 6553 then Error ' Avoid overflow when w2 is multiplied

by 10.
pulsin 7,0,w3 ' Take negative pulse sample.
let w3 = w2+w3
let w3 = w3/10 ' Distribute multiplication by 10 into two
let w2 = w2*10 ' parts to avoid an overflow.
let w2 = w2/w3 ' Calculate percentage.
serout 0,N2400,(#w2," percent",10,13)
pause 1000 ' Update once a second.
goto Duty

' Handle overflows by skipping calculations and telling the user.
Error: serout 0,N2400,("Out of range",10,13)

pause 1000
goto Duty

5: Practical Pulse Measurements

Page 98 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Err: serout 0,N2400,("out of range",10,13)
goto Cap

' Listing 4: VCO.BAS
' The BASIC Stamp uses input from the VCO of a 4046 phase-locked loop as a
logarithmic
' A-to-D converter. Input on pin 7; 2400-baud serial output on pin 0.

input 7
output 0

VCO: pulsin 7,1,w2 ' Put the width of pulse on pin 7 into w2.
let w2 = w2-45 ' Allow a near-zero minimum value

' without underflow.
serout 0,N2400,(#w2,10,13)
pause 1000 ' Wait 1 second between measure-

' ments.
goto VCO

5: Practical Pulse Measurements

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 99

BASIC Stamp I Application Notes

1

6: A Serial Stepper Controller

Introduction. This application note demonstrates simple hardware
and software techniques for driving and controlling common four-coil
stepper motors.

Background. Stepper motors translate digital switching sequences
into motion. They are used in printers, automated machine tools, disk
drives, and a variety of other applications requiring precise motions
under computer control.

Unlike ordinary dc motors, which spin freely when power is applied,
steppers require that their power source be continuously pulsed in
specific patterns. These patterns, or step sequences, determine the
speed and direction of a stepper’s motion. For each pulse or step input,
the stepper motor rotates a fixed angular increment; typically 1.8 or 7.5
degrees.

The fixed stepping angle gives steppers their precision. As long as the
motor’s maximum limits of speed or torque are not exceeded, the
controlling program knows a stepper’s precise position at any given
time.

Steppers are driven by the interaction (attraction and repulsion) of
magnetic fields. The driving magnetic field “rotates” as strategically
placed coils are switched on and off. This pushes and pulls at perma-
nent magnets arranged around the edge of a rotor that drives the output

Figure 1. Schematic for the serial stepper controller.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

ULN 2003
TO PIN 11

TO PIN 10

TO PIN 1

TO PIN 4

NCNC

1k

1k 1k

1k

BLK

BRN

YEL

ORG

GRN

RED

+5

+12

Stepper Motor

NC

1

8

16

9

IN 1

IN 2

IN 3

IN 4

IN 5

IN 6

IN 7

GND

OUT 1

OUT 2

OUT 3

OUT 4

OUT 5

OUT 6

OUT 7

TEST
Serial Input

22k

+5

AIRPAX COLOR CODE:
RED & GREEN = COMMON

Serial Output

Page 100 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 6: A Serial Stepper Controller

shaft. When the on-off pattern of the magnetic fields is in the proper
sequence, the stepper turns (when it’s not, the stepper sits and quivers).

The most common stepper is the four-coil unipolar variety. These are
called unipolar because they require only that their coils be driven on
and off. Bipolar steppers require that the polarity of power to the coils
be reversed.

The normal stepping sequence for four-coil unipolar steppers appears
in figure 2. There are other, special-purpose stepping sequences, such
as half-step and wave drive, and ways to drive steppers with multi-
phase analog waveforms, but this application concentrates on the
normal sequence. After all, it’s the sequence for which all of the
manufacturer’s specifications for torque, step angle, and speed apply.

If you run the stepping sequence in figure 2 forward, the stepper rotates
clockwise; run it backward, and the stepper rotates counterclockwise.
The motor’s speed depends on how fast the controller runs through the
step sequence. At any time the controller can stop in mid sequence. If it
leaves power to any pair of energized coils on, the motor is locked in
place by their magnetic fields. This points out another stepper motor
benefit: built-in brakes.

Many microprocessor stepper drivers use four output bits to generate
the stepping sequence. Each bit drives a power transistor that switches
on the appropriate stepper coil. The stepping sequence is stored in a
lookup table and read out to the bits as required.

This design takes a slightly different approach. First, it uses only two
output bits, exploiting the fact that the states of coils 1 and 4 are always

1 2 3 4 1

coil 1 1 1 0 0 1
coil 2 0 0 1 1 0
coil 3 1 0 0 1 1
coil 4 0 1 1 0 0

Step Sequence

Figure 2. Normal stepping sequence.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 101

BASIC Stamp I Application Notes

1

6: A Serial Stepper Controller

the inverse of coils 2 and 3. Look at figure 2 again. Whenever coil 2 gets
a 1, coil 1 gets a 0, and the same holds for coils 3 and 4. In Stamp designs,
output bits are too precious to waste as simple inverters, so we give that
job to two sections of the ULN2003 inverter/driver.

The second difference between this and other stepper driver designs is
that it calculates the stepping sequence, rather than reading it out of a
table. While it’s very easy to create tables with the Stamp, the calcula-
tions required to create the two-bit sequence required are very simple.
And reversing the motor is easier, since it requires only a single
additional program step. See the listing.

How it works. The stepper controller accepts commands from a termi-
nal or PC via a 2400-baud serial connection. When power is first applied
to the Stamp, it sends a prompt to be displayed on the terminal screen.
The user types a string representing the direction (+ for forward, – for
backward), number of steps, and step delay (in milliseconds), like this:

step>+500 20

As soon as the user presses enter, return, or any non-numerical charac-
ter at the end of the line, the Stamp starts the motor running. When the
stepping sequence is over, the Stamp sends a new step> prompt to the
terminal. The sample command above would take about 10 seconds
(500 x 20 milliseconds). Commands entered before the prompt reap-
pears are ignored.

On the hardware side, the application accepts any stepper that draws
500 mA or less per coil. The schematic shows the color code for an
Airpax-brand stepper, but there is no standardization among different

YELLOW

ORANGE

RED

BROWN

BLACK

GREEN

Figure 3. Color code for Airpax steppers.

Page 102 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 6: A Serial Stepper Controller

brands. If you use another stepper, use figure 3 and an ohmmeter to
translate the color code. Connect the stepper and give it a try. If it
vibrates instead of turning, you have one or more coils connected
incorrectly. Patience and a little experimentation will prevail.

' Program STEP.BAS
' The Stamp accepts simply formatted commands and drives a four-coil stepper.
Commands
' are formatted as follows: +500 20<return> means rotate forward 500 steps with 20
' milliseconds between steps. To run the stepper backward, substitute - for +.

Symbol Directn = b0
Symbol Steps = w1
Symbol i = w2
Symbol Delay = b6
Symbol Dir_cmd = b7

dirs = %01000011 : pins = %00000001 ' Initialize output.
b1 = %00000001 : Directn = "+"
goto Prompt ' Display prompt.

' Accept a command string consisting of direction (+/-), a 16-bit number
' of steps, and an 8-bit delay (milliseconds) between steps. If longer
' step delays are required, just command 1 step at a time with long
' delays between commands.

Cmd: serin 7,N2400,Dir_cmd,#Steps,#Delay ' Get orders from terminal.
if Dir_cmd = Directn then Stepit ' Same direction? Begin.
b1 = b1^%00000011

' Else reverse (invert b1).

Stepit: for i = 1 to Steps
' Number of steps.

pins = pins^b1
' XOR output with b1, then invert b1

b1 = b1^%00000011
' to calculate the stepping sequence.

pause Delay ' Wait commanded delay between
' steps.

next
Directn = Dir_cmd

' Direction = new direction.

Prompt: serout 6,N2400,(10,13,"step> ") ' Show prompt, send return
goto Cmd ' and linefeed to terminal.

Program listing: As with the other appli-
cation notes, this program may be down-
loaded from our Internet ftp site at
ftp.parallaxinc.com. The ftp site may be
reached directly or through our web site
at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 103

BASIC Stamp I Application Notes

1

7: Using a Thermistor

Introduction. This application note shows how to measure tempera-
ture using an inexpensive thermistor and the BASIC Stamp’s pot
command. It also discusses a technique for correcting nonlinear data.

Background. Radio Shack offers an inexpensive and relatively precise
thermistor—a component whose resistance varies with temperature.
The BASIC Stamp has the built-in ability to measure resistance with the
pot command and an external capacitor. Put them together, and your
Stamp can measure the temperature, right? Not without a little math.

The thermistor’s resistance decreases as the temperature increases, but
this response is not linear. There is a table on the back of the thermistor
package that lists the resistance at various temperatures in degrees
celsius (°C). For the sake of brevity, we won’t reproduce that table here,
but the lefthand graph of figure 1 shows the general shape of the
thermistor response curve in terms of the more familiar Fahrenheit
scale (°F).

The pot command throws us a curve of its own, as shown in figure 1
(right). Though not as pronounced as the thermistor curve, it must be
figured into our temperature calculations in order for the results to be
usable.

One possibility for correcting the combined curves of the thermistor
and pot command would be to create a lookup table in the Stamp’s
EEPROM. The table would have to be quite large to cover a reasonable
temperature range at 1° precision. An alternative would be to create a
smaller table at 10° precision, and figure where a particular reading

Figure 1. Response curves of the thermistor and pot command.

0

10

20

30

40

50

60

0 50 100 150
Temperature °F

T
he

rm
is

to
r

(k
Ω

)

0

50

100

150

200

250

0 10 20 30 40 50
Input resistance (k Ω)

P
ot

 c
om

m
an

d
ou

tp
ut

Page 104 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

 might lie within its 10° range. This is interpolation, and it can work quite
well. It would still use quite a bit of the Stamp’s limited EEPROM space,
though.

Another approach, the one used in the listing, is to use a power-series
polynomial to model the relationship between the pot reading and
temperature. This is easier than it sounds, and can be applied to many
nonlinear relationships.

Step 1: Prepare a table. The first step is to create a table of a dozen or
so inputs and outputs. The inputs are resistances and outputs are
temperatures in °F. Resistance values in this case are numbers returned
by the pot function. To equate pot values with temperatures, we
connected a 50k pot and a 0.01 µF capacitor to the Stamp and performed
the calibration described in the Stamp manual. After obtaining a scale
factor, we pressed the space bar to lock it in.

Now we could watch the pot value change as the potentiometer was
adjusted. We disconnected the potentiometer from the Stamp and
hooked it to an ohmmeter. After setting the potentiometer to 33.89k
(corresponding to a thermistor at 23 °F or –5 °C), we reconnected it to
the Stamp, and wrote down the resulting reading. We did this for each
of the calibration values on the back of the thermistor package, up to
149 °F (65 °C).

Step 2: Determine the coefficients. The equation that can approximate
our nonlinear temperature curve is:

Temperature = C0 + C1 • (Pot Val) + C2 • (Pot Val)2 + C3 • (Pot Val)3

where C0, C1, C2, and C3 are coefficients supplied by analytical
software, and each Cn • (Pot Val)n is called a term. The equation above
has three terms, so it is called a third-order equation. Each additional
term increases the range over which the equation’s results are accurate.
You can increase or decrease the number of terms as necessary, but each
additional coefficient requires that Pot Val be raised to a higher power.
This can make programming messy, so it pays to limit the number of
terms to the fewest that will do the job.

7: Using a Thermistor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 105

BASIC Stamp I Application Notes

1

The software that determines the coefficients is called GAUSFIT.EXE and is
available from the Parallax ftp site. To use it, create a plain text file called
GF.DAT. In this file, which should be saved to the same subdirectory as
GAUSFIT, list the inputs and outputs in the form in,out<return>. If there
are values that require particular precision, they may be listed more
than once. We wanted near-room-temperature values to be right on, so
we listed 112,68 (pot value at 68 °F) several times.

To run the program, type GAUSFIT n where n is the number of terms
desired. The program will compute coefficients and present you with
a table showing how the computed data fits your samples. The fit will
be good in the middle, and poorer at the edges. If the edges are
unacceptable, you can increase the number of terms. If they are OK, try
rerunning the program with fewer terms. We were able to get away
with just two terms by allowing accuracy to suffer outside a range of 50
°F to 90 °F.

Step 3: Factor the coefficients. The coefficients that GAUSFIT produces
are not directly useful in a BASIC Stamp program. Our coefficients
were: C0 = 162.9763, C1 = –1.117476, and C2 = 0.002365991. We plugged
the values into a spreadsheet and computed temperatures from pot
values and then started playing with the coefficients. We found that the
following coefficients worked almost as well as the originals: C0 = 162,
C1 = –1.12, and C2 = 0.0024.

The problem that remained was how to use these values in a Stamp
program. The Stamp deals in only positive integers from 0 to 65,535. The
trick is to express the numbers to the right of the decimal point as
fractions. For example, the decimal number 0.75 can be expressed as 3/
4. So to multiply a number by 0.75 with the BASIC Stamp, first multiply
the number by 3, then divide the result by 4. For less familiar decimal
values, it may take some trial and error to find suitable fractions. We
found that the 0.12 portion of C1 was equal to 255/2125, and that
C2 (0.0024) = 3/1250.

Step 4: Plan the order of execution. Just substituting the fractions for the
decimal portions of the formula still won’t work. The problem is that
portions of terms, such as 3•Pot Val2/1250, can exceed the 65,535 limit.
If Pot Val were 244, then 3•2442 would equal 178,608; too high.

7: Using a Thermistor

Page 106 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

The solution is to factor the coefficients and rearrange them into smaller
problems that can be solved within the limit. For example (using PV to
stand for Pot Val):

PV•PV•3
1250

 =
PV•PV•3
5•5•5•5•2

 =
PV
25

 •
PV•3
50

The program in the listing is an example of just such factoring and
rearrangement. Remember to watch out for the lower limit as well. Try
to keep intermediate results as high as possible within the Stamp’s
integer limits. This will reduce the effect of truncation errors (where any
value to the right of the decimal point is lost).

Conclusion. The finished program, which reports the temperature to
the PC screen via the debug command, is deceptively simple. An
informal check of its output found that it tracks within 1 °F of a
mercury/glass bulb thermometer in the range of 60 °F to 90 °F. Addi-
tional range could be obtained at the expense of a third-order equation;
however, current performance is more than adequate for use in a
household thermostat or other noncritical application. Cost and com-
plexity are far less than that of a linear sensor, precision voltage
reference, and analog-to-digital converter.

If you adapt this application for your own use, component tolerances
will probably produce different results. However, you can calibrate the
program very easily. Connect the thermistor and a stable, close-toler-
ance 0.1-µF capacitor to the Stamp as shown in figure 2. Run the
program and note the value that appears in the debug window.
Compare it to a known accurate thermometer located close to the
thermistor. If the thermometer says 75 and the Stamp 78, reduce the
value of C0 by 3. If the thermometer says 80 and the Stamp 75, increase
the value of C0 by 5. This works because the relationship between the
thermistor resistance and the temperature is the same, only the value of
the capacitor is different. Adjusting C0 corrects this offset.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

7: Using a Thermistor

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 107

BASIC Stamp I Application Notes

1
Figure 2. Schematic to accompany THERM.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

Radio Shack
Thermistor
(271-110)

0.1µF

' Program THERM.BAS
' This program reads a thermistor with the BASIC
' pot command, computes the temperature using a
' power-series polynomial equation, and reports
' the result to a host PC via the Stamp cable
' using the debug command.

' Symbol constants represent factored portions of
' the coefficients C0, C1, and C2. "Top" and "btm"
' refer to the values' positions in the fractions;
' on top as a multiplier or on the bottom as a
' divisor.
Symbol co0 = 162
Symbol co1top = 255
Symbol co1btm = 2125
Symbol co2bt1 = 25
Symbol co2top = 3
Symbol co2btm = 50

' Program loop.
Check_temp:

pot 0,46,w0 ' 46 is the scale factor.

' Remember that Stamp math is computed left to
' right--no parentheses, no precedence of
' operators.

let w1 = w0*w0/co2bt1*co2top/co2btm
let w0 = w0*co1top/co1btm+w0
let w0 = co0+w1-w0
debug w0
pause 1000 ' Wait 1 second for next

goto Check_temp ' temperature reading.

7: Using a Thermistor

Page 108 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 109

BASIC Stamp I Application Notes

1

Introduction. This application note presents a technique for using the
BASIC Stamp to send short messages in Morse code. It demonstrates the
Stamp’s built-in lookup and sound commands.

Background. Morse code is probably the oldest serial communication
protocol still in use. Despite its age, Morse has some virtues that make
it a viable means of communication. Morse offers inherent compres-
sion; the letter E is transmitted in one-thirteenth the time required to
send the letter Q. Morse requires very little transmitting power and
bandwidth compared to other transmitting methods. And Morse may
be sent and received by either human operators or automated equip-
ment.

Although Morse has fallen from favor as a means for sending large
volumes of text, it is still the legal and often preferred way to identify
automated repeater stations and beacons. The BASIC Stamp, with its
ease of programming and minuscule power consumption, is ideal for
this purpose.

The characters of the Morse code are represented by sequences of long
and short beeps known as dots and dashes (or dits and dahs). There are
one to six beeps or elements in the characters of the standard Morse
code. The first step in writing a program to send Morse is to devise a
compact way to represent sequences of elements, and an efficient way
to play them back.

8: Sending Morse Code

Schematic to accompany program MORSE.BAS.

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC
Speaker

0.047µF

To keying
circuitry

Page 110 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

The table on the next page shows the encoding scheme used in this
program. A single byte represents a Morse character. The highest five
bits of the byte represent the actual dots(0s) and dashes (1s), while the
lower three bits represent the number of elements in the character. For
example, the letter F is dot dot dash dot, so it is encoded 0010x100,
where x is a don’t-care bit. Since Morse characters can contain up to six
elements, we have to handle the exceptions. Fortunately, we have some
excess capacity in the number-of-elements portion of the byte, which
can represent numbers up to seven. So we assign a six-element charac-
ter ending in a dot the number six, while a six-element character ending
in a dash gets the number seven.

The program listing shows how these bytes can be played back to
produce Morse code. The table of symbols at the beginning of the
program contain the timing data for the dots and dashes themselves. If
you want to change the program’s sending speed, just enter new values
for dit_length , dah_length , etc. Make sure to keep the timing

8: Sending Morse Code

Char Morse Binar y Decimal
A •– 01000010 66
B –••• 10000100 132
C –•–• 10100100 164
D –•• 10000011 131
E • 00000001 1
F ••–• 00100100 36
G ––• 11000011 195
H •••• 00000100 4
I •• 00000010 2
J •––– 01110100 116
K –•– 10100011 163
L •–•• 01000100 68
M –– 11000010 194
N –• 10000010 130
O ––– 11100011 227
P •––• 01100100 100
Q ––•– 11010100 212
R •–• 01000011 67

S ••• 00000011 3
T – 10000001 129
U ••– 00100011 35
V •••– 00010100 20
W •–– 01100011 99
X –••– 10010100 148
Y –•–– 10110100 180
Z ––•• 11000100 196
0 ––––– 11111101 253
1 •–––– 01111101 125
2 ••––– 00111101 61
3 •••–– 00011101 29
4 ••••– 00001101 13
5 ••••• 00000101 5
6 –•••• 10000101 133
7 ––••• 11000101 197
8 –––•• 11100101 229
9 ––––• 11110101 245

Char Morse Binar y Decimal

Morse Characters and their Encoded Equivalents

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 111

BASIC Stamp I Application Notes

1

relationships roughly the same; a dash should be about three times as
long as a dot.

The program uses the BASIC Stamp’s lookup function to play se-
quences of Morse characters. Lookup is a particularly modern feature
of Stamp BASIC in that it is an object-oriented data structure. It not only
contains the data, it also “knows how” to retrieve it.

Modifications. The program could readily be modified to transmit
messages whenever the Stamp detects particular conditions, such as
“BATTERY LOW.” With some additional programming and analog-to-
digital hardware, it could serve as a low-rate telemetry unit readable by
either automated or manual means.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program MORSE.BAS
' This program sends a short message in Morse code every
' minute. Between transmissions, the Stamp goes to sleep
' to conserve battery power.
Symbol Tone = 100
Symbol Quiet = 0
Symbol Dit_length = 7 ' Change these constants to
Symbol Dah_length = 21 ' change speed. Maintain ratios
Symbol Wrd_length = 42 ' 3:1 (dah:dit) and 7:1 (wrd:dit).
Symbol Character = b0
Symbol Index1 = b6
Symbol Index2 = b2
Symbol Elements = b4

Identify:
output 0: output 1
for Index1 = 0 to 7
' Send the word "PARALLAX" in Morse:

lookup Index1,(100,66,67,66,68,68,66,148),Character
gosub Morse

next
sleep 60
goto Identify

Morse:

8: Sending Morse Code

Page 112 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

let Elements = Character & %00000111
if Elements = 7 then Adjust1
if Elements = 6 then Adjust2
Bang_Key:
for Index2 = 1 to Elements

if Character >= 128 then Dah
goto Dit

 Reenter:
let Character = Character * 2

next
gosub char_sp
return
Adjust1:
Elements = 6
goto Bang_Key

Adjust2:
Character = Character & %11111011
goto Bang_Key
end

Dit:
high 0
sound 1,(Tone,Dit_length)
low 0
sound 1,(Quiet,Dit_length)
goto Reenter

Dah:
high 0
sound 1,(Tone,Dah_length)
low 0
sound 1,(Quiet,Dit_length)
goto Reenter

Char_sp:
sound 1,(Quiet,Dah_length)
return

Word_sp:
sound 1,(Quiet,Wrd_length)
return

8: Sending Morse Code

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 113

BASIC Stamp I Application Notes

1

Introduction. This application note describes an electronic dice game
based on the BASIC Stamp. It shows how to connect LED displays to the
Stamp, and how to multiplex inputs and outputs on a single Stamp pin.

Background. Much of BASIC’s success as a programming language is
probably the result of its widespread use to program games. After all,
games are just simulations that happen to be fun.

How it works. The circuit for the dice game uses Stamp pins 0 through
6 to source current to the anodes of two sets of seven LEDs. Pin 7 and
the switching transistors determine which set of LEDs is grounded.
Whenever the lefthand LEDs are on, the right are off, and vice versa.
To light up the LEDs, the Stamp puts die1’s pattern on pins 0-6, and
enables die1 by making pin 7 high. After a few milliseconds, it puts
die2’s pattern on pins 0-6 and takes pin 7 low to enable die2.

In addition to switching between the dice, pin 7 also serves as an input
for the press-to-roll pushbutton. The program changes the pin to an
input and checks its state. If the switch is up, a low appears on pin 7
because the base-emitter junction of the transistor pulls it down to about
0.7 volts. If the switch is pressed, a high appears on pin 7. The 1k resistor
puts a high on pin 7 when it is an input, but pin 7 is still able to pull the
base of the transistor low when it is an output. As a result, holding the
switch down doesn’t affect the Stamp’s ability to drive the display.

9: Constructing a Dice Game

P
I
C
16
C
5
6

0

1

2

3

4

5

6

7

+5V Vin

GNDBASIC STAMP

E
E
P
R
O
M

(C) 1992 Parallax, Inc.

PC

2N2222

47k

+5

1k

1k

2N2222

Roll

Green LEDs arranged in “pip” pattern with cathodes (–)
connected together, anodes (+) to Stamp pins as shown.

1k (all)

1k

0 1

5 2

4 3

6

0 1

5 2

4 3

6

Schematic to accompany program DICE.BAS.

Page 114 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 9: Constructing a Dice Game

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program DICE.BAS
' An electonic dice game that uses two sets of seven LEDs
' to represent the pips on a pair of dice.

Symbol die1 = b0 ' Store number (1-6) for first die.
Symbol die2 = b1 ' Store number (1-6) for ssecond die.
Symbol shake = w3 ' Random word variable
Symbol pippat = b2 ' Pattern of "pips" (dots) on dice.
Symbol Select = 7 ' Pin number of select transistors.

high Select
let dirs = 255 ' All pins initially outputs.
let die1 = 1 ' Set lucky starting value for dice (7).
let die2 = 4 ' (Face value of dice = die1+1, die2+1.)

Repeat: ' Main program loop.
let pippat = die1
gosub Display ' Display die 1 pattern.
let pippat = die2 ' Now die 2.
gosub Display
input Select ' Change pin 7 to input.
if pin7 = 1 then Roll ' Switch closed? Roll the dice.
let w3 = w3+1 ' Else stir w3.
Reenter: ' Return from Roll subroutine.
output Select ' Restore pin 7 to output.
goto Repeat

Display: ' Look up pip pattern.
lookup pippat,(64,18,82,27,91,63),pippat
let pins = pins&%10000000
toggle Select ' Invert Select.
let pins = pins|pippat ' OR pattern into pins.
pause 4 ' Leave on 4 milliseconds.
return

Roll:
random shake ' Get random number.
let die1 = b6&%00000111 ' Use lower 3 bits of each byte.
let die2 = b7&%00000111
if die1 > 5 then Roll ' Throw back numbers over 5 (dice>6).
if die2 > 5 then Roll
goto Reenter ' Back to the main loop.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 115

BASIC Stamp I Application Notes

1

Introduction. This application note shows how to interface an inexpen-
sive humidity/temperature sensor kit to the Stamp.

Background. When it’s hot, high humidity makes it seem hotter. When
it’s cold, low humidity makes it seem colder. In areas where electronic
components are handled, low humidity increases the risk of electro-
static discharge (ESD) and damage. The relationship between tempera-
ture and humidity is a good indication of the efficiency of heavy-duty
air-conditioning equipment that uses evaporative cooling.

Despite the value of knowing temperature and humidity, it can be hard
to find suitable humidity sensors. This application solves that problem
by borrowing a sensor kit manufactured for computerized home weather
stations.

The kit, available from the source listed at the end of this application
note for $25, consists of fewer than a dozen components and a small (0.5"
x 2.75") printed circuit board. Assembly entails soldering the compo-
nents to the board. When it’s done, you have two sensors: a tempera-
ture-dependent current source and a humidity-dependent oscillator.

Once the sensor board is complete, connect it to the Stamp using the
circuit shown in the figure and download the software in the listing. The

10: Humidity and Temperature

Schematic to accompany program HUMID.BAS.

220

2 7

4024
counter
(÷128)

13

14

+50.1µF

4 (RH clock output)

1 (Temp –)

2 (Temp +)

5 (RH clock enable)

6

+5

3

Humidity/Temperature
Board

0

1

2
3

BASIC
Stamp I/O

pins

4024
counter
(÷128)

Page 116 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

debug window will appear on your PC screen showing values repre-
senting humidity and temperature. To get a feel for the board’s sensi-
tivity, try this: Breathe on the sensor board and watch the debug values
change. The humidity value should increase dramatically, while the
temperature number (which decreases as the temperature goes up) will
fall a few counts.

How it works. The largest portion of the program is devoted to
measuring the temperature, so we’ll start there. The temperature sensor
is an LM334Z constant-current source. Current through the device
varies at the rate of 0.1µA per 1° C change in temperature. The program
in the listing passes current from pin 2 of the Stamp through the sensor
to a capacitor for a short period of time, starting with 5000 µs. It then
checks the capacitor’s state of charge through pin 1. If the capacitor is
not charged enough for pin 1 to see a logical 1, the Stamp discharges the
capacitor and tries again, with a slightly wider pulse of 5010 µs.

It stays in a loop, charging, checking, discharging, and increasing the
charging pulse until the capacitor shows as a 1 on pin 1’s input. Since the
rate of charge is proportional to current, and the current is proportional
to temperature, the width of the pulse that charges the capacitor is a
relative indication of temperature.

Sensing humidity is easier, thanks to the design of the kit’s hardware.
The humidity sensor is a capacitor whose value changes with relative
humidity (RH). At a relative humidity of 43 percent and a temperature
of 77° F, the sensor has a value of 122 pF ± 15 percent. Its value changes
at a rate of 0.4 pF ± 0.05 pF for each 1-percent change in RH.

The sensor controls the period of a 555 timer wired as a clock oscillator.
The clock period varies from 225 µs at an arid 10-percent RH to 295 µs
at a muggy 90-percent RH. Since we’re measuring this change with the
Stamp’s pulsin command, which has a resolution of 10 µs, we need to
exaggerate those changes in period in order to get a usable change in
output value. That’s the purpose of the 4024 counter.

We normally think of a counter as a frequency divider, but by definition
it’s also a period multiplier. By dividing the clock output by 128, we
create a square wave with a period 128 times as long. Now humidity is

10: Humidity and Temperature

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 117

BASIC Stamp I Application Notes

1

10: Humidity and Temperature

represented by a period ranging from 28.8 to 37.8 milliseconds. Since
pulsin measures only half of the waveform, the time that it’s high, RH
values range from 14.4 to 18.9 milliseconds. At 10-µs resolution, pulsin
expresses these values as numbers ranging from 1440 to 1890. (Actually,
thanks to stray capacitance, the numbers returned by the circuit will
tend to be higher than this.)

In order to prevent clock pulses from interfering with temperature
measurements, the RH clock is disabled when not in use. If you really
need the extra pin, you can tie pin 5 of the sensor board high, leaving the
clock on continuously. You may need to average several temperature
measurements to eliminate the resulting jitter, however.

Since the accuracy of both of the measurement techniques is highly
dependent on the individual components and circuit layout used, we’re
going to sidestep the sticky issue of calibration and conversion to units.
A recent article in Popular Electronics (January 1994 issue, page 62,
“Build a Relative-Humidity Gauge”) tells how to calibrate RH sensors
using salt solutions. Our previous application note (Stamp #7, “Sensing
Temperature with a Thermistor”) covers methods for converting raw
data into units, even if the data are nonlinear.

Program listing and parts source. These programs may be down-
loaded from our ftp site at ftp.parallaxinc.com, or through our web site
at http://www.parallaxinc.com. The sensor kit (#WEA-TH-KIT) is
available for $25 plus shipping and handling from Fascinating Elec-
tronics, PO Box 126, Beaverton, OR 97075-0126; phone, 1-800-683-5487.

' Program HUMID.BAS
' The Stamp interfaces to an inexpensive temperature/humidity
' sensor kit.

Symbol temp = w4 ' Temperature
Symbol RH = w5 ' Humidity

' The main program loop reads the sensors and displays
' the data on the PC screen until the user presses a key.

Loop:
input 0:input 2: output 3

Page 118 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

low 2: low 3
let temp = 500 ' Start temp at a reasonable value.

ReadTemp:
output 1: low 1
pause 1 ' Discharge the capacitor.
input 1 ' Get ready for input.
pulsout 2,temp ' Charge cap thru temp sensor.
if pin1 = 1 then ReadRH ' Charged: we’re done.
let temp = temp + 1 ' Else try again
goto ReadTemp ' with wider pulse.

ReadRH:
high 3 ' Turn on the 555 timer
pause 500 ' and let it stabilize.
pulsin 0,1,RH ' Read the pulse width.
low 3 ' Kill the timer.
debug temp:debug RH ' Display the results.
goto Loop ' Do it all again.

10: Humidity and Temperature

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 119

BASIC Stamp I Application Notes

1

11: Infrared Communication

Introduction. This application note shows how to build a simple and
inexpensive infrared communication interface for the BASIC Stamp.

Background. Today’s hottest products all seem to have one thing in
common; wireless communication. Personal organizers beam data into
desktop computers and wireless remotes allow us to channel surf from
our couches. Not wanting the BASIC Stamp to be left behind, we
devised a simple infrared data link. With a few inexpensive parts from
your neighborhood electronics store you can communicate at 1200
baud over distances greater than 10 feet indoors. The circuit can be
modified for greater range by the use of a higher performance LED.

How it works. As the name implies, infrared (IR) remote controls
transmit instructions over a beam of IR light. To avoid interference from
other household sources of infrared, primarily incandescent lights, the
beam is modulated with a 40-kHz carrier. Legend has it that 40 kHz was
selected because the previous generation of ultrasonic remotes worked

Schematic to accompany program IR.BAS.

4.7k

PC RS-232
output

pin 4 of
555 timer

GP1U52X
output

PC RS-232
input

CMOS inverter
(1/6 74HCT04)

PC Interfaces

Transmit Receive

+5

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

RB
10k

CT
0.001µF

1k

7

6

2

3

100Ω

2N2222

IR LEDSerial input
to 1200 bps

GP1U52X

+5
3
2
1

4.7k

+5

Serial
output

10 feet
or more
indoors

10k

10k pot

RA

1N914

Page 120 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

at this frequency. Adapting their circuits was just a matter of swapping
an LED for the ultrasonic speaker.

The popularity of IR remotes has inspired several component manufac-
turers to introduce readymade IR receiver modules. They contain the
necessary IR detector, amplifier, filter, demodulator, and output stages
required to convert a 40-kHz IR signal into 5-volt logic levels. One such
module is the GP1U52X, available from your local Radio Shack store as
part no. 276-137. As the schematic shows, this part is all that’s required
for the receiving section of our application.

For the transmitting end, all we need is a switchable source of 40-kHz
modulation to drive an IR LED. That’s the purpose of the timer circuit
in the schematic. Putting a 1 on the 555’s reset pin turns the 40-kHz
modulation on; a 0 turns it off. You may have to fiddle with the values
of RA, RB, and CT. The formula is Frequency = 1.44/((RA+2*RB)*CT).
With RB at 10k, the pot in the RA leg of the circuit should be set to about
6k for 40-kHz operation. However, capacitor tolerances being what
they are, you may have to adjust this pot for optimum operation.

To transmit from a Stamp, connect one of the I/O pins directly to pin 4
of the ’555 timer. If you use pin 0, your program should contain code
something like this:

low 0 ' Turn off pin 0's output latch.
output 0 ' Change pin 0 to output.
... ' other instructions
serout 0,N1200,("X") ' Send the letter "X"

To receive with another Stamp, connect an I/O pin to pin 1 of the
GP1U52X. If the I/O pin is pin 0, the code might read:

input 0 ' Change pin 0 to input.
... ' other instructions
serin 0,T1200,b2 ' Receive data in variable b2.

To receive with a PC, you’ll need to verify that the PC is capable of
receiving 5-volt RS-232. If you have successfully sent RS-232 from your
Stamp to the PC, then it’s compatible. As shown in the schematic, you’ll
need to add a CMOS inverter to the output of the GP1U52X. Don’t use

11: Infrared Communication

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 121

BASIC Stamp I Application Notes

1

11: Infrared Communication

a TTL inverter; its output does not have the required voltage swing.
To transmit from a PC, you’ll need to add a diode and resistor ahead of
the ’555 timer as shown in the schematic. These protect the timer from
the negative voltage swings of the PC’s real RS-232 output.

Modifications. I’m sure you’re already planning to run the IR link at
2400 baud, the Stamp’s maximum serial speed. Go ahead, but be
warned that there’s a slight detection delay in the GP1U52X that causes
the start bit of the first byte of a string to be shortened a bit. Since the
serial receiver bases its timing on the leading edge of the start bit, the
first byte will frequently be garbled.

If you want more range or easier alignment between transmitter and
receiver, consider using more or better LEDs. Some manufacturers’
data sheets offer instructions for using peak current, duty cycle, thermal
characteristics, and other factors to calculate optimum LED power right
up to the edge of burnout. However, in casual tests around the work-
shop, we found that a garden-variety LED driven as shown could
reliably communicate with a receiver more than 10 feet away. A simple
reflector or lens arrangement might be as beneficial as an exotic LED for
improving on this performance.

If you find that your IR receiver occasionally produces “garbage
characters” when the transmitter is off, try grounding the metal case of
the GP1U52X. It is somewhat sensitive to stray signals. If you build the
transmitter and receiver on the same prototyping board for testing, you
are almost certain to have this problem. Bypass all power connections
with 0.1-µF capacitors and use a single-point ground. And be encour-
aged by the fact that the circuit works much better in its intended
application, with the transmitter and receiver several feet apart.

Program listing. There’s no program listing this time; however, you
may download programs for other application notes from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Page 122 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 123

BASIC Stamp I Application Notes

1

12: Sonar Rangefinding

Introduction. This application note presents a circuit that allows the
BASIC Stamp to measure distances from 1 to 12 feet using inexpensive
ultrasonic transducers and commonly available parts.

Background. When the November 1980 issue of Byte magazine pre-
sented Steve Ciarcia’s article Home in on the Range! An Ultrasonic
Ranging System, computer hobbyists were fascinated. The project, based
on Polaroid’s SX-70 sonar sensor, allowed you to make real-world
distance measurements with your computer. We’ve always wanted to
build that project, but were put off by the high cost of the Polaroid
sensor ($150 in 1980, about $80 today).

If you’re willing to give up some of the more advanced features of the

Figure 1. Schematic to accompany program SONAR.BAS.

CA5160

+5

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

10k

RB
10k

CT
0.001µF

40-kHz
transmitter

7

6

2

3

From
Stamp
pin 0

10k pot

RA

40-kHz
receiver

10k

0.022µF

1M

–

+

+5

7

4
6

2

3

10k
10k

+5

18k 18k

10k pot

CT
0.001µF

5

6 7

3

1 2

+5

4

0.022µF

0.01µF

LM567

VDD

Output
8

+5

10k

To
Stamp
pin 1

Output
filter

Loop
filter

Input

Timing R

Timing C GND

+5

Optional:
detection LED

1k

Page 124 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Polaroid sensor (35-foot range, multi-frequency chirps to avoid false
returns, digitally controlled gain) you can build your own experimental
sonar unit for less than $10. Figure 1 shows how.

Basically, our cheap sonar consists of two sections; an ultrasonic trans-
mitter based on a TLC555 timer wired as an oscillator, and a receiver
using a CMOS op-amp and an NE567 tone decoder. The Stamp controls
these two units to send and receive 40-kHz ultrasonic pulses. By
measuring the elapsed time between sending a pulse and receiving its
echo, the Stamp can determine the distance to the nearest reflective
surface. Pairs of ultrasonic transducers like the ones used in this project
are available from the sources listed at the end of this application note
for $2 to $3.50.

Construction. Although the circuits are fairly self-explanatory, a few
hints will make construction go more smoothly. First, the transmitter
and receiver should be positioned about 1 inch apart, pointing in the
same direction. For reasons we’ll explain below, the can housing the
transmitter should be wrapped in a thin layer of sound-deadening
material. We used self-adhesive felt from the hardware store. Cloth tape
or thin foam would probably work as well. Don’t try to enclose the
transducers or block the receiver from hearing the transmitter directly;
we count on this to start the Stamp’s timing period. More on this later.
For best performance, the oscillation frequency of the TLC555 and the
NE567 should be identical and as close to 40 kHz as possible. There are
two ways to achieve this. One way is to adjust the circuits with a
frequency counter. For the ’555, temporarily connect pin 4 to +5 volts
and measure the frequency at pin 3. For the ’567, connect the counter to
pin 5.

If you don’t have a counter, you’ll have to use ±5-percent capacitors for
the units marked CT in the ’555 and ’567 circuits. Next, you’ll need to
adjust the pots so that the timing resistance is as close as possible to the
following values. For the ’555: Frequency = 1.44/((RA + 2*RB)* CT),
which works out to 40x103 = 1.44/((16x103+ 20x103) x 0.001x10-6).

Measure the actual resistance of the 10k resistors labeled RA and RB in
the figure and adjust the 10k pot in the RA leg so that the total of the
equation RA + 2*RB is 36k. Once the resistances are right on, the

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 125

BASIC Stamp I Application Notes

1

12: Sonar Rangefinding

frequency of oscillation will depend entirely on CT. With 5-percent
tolerance, this puts you in the ballpark; 38.1 to 42.1 kHz.

For the ’567 the math comes out like so: Frequency = 1/(1.1*R*CT);
40x103 = 1/(1.1 x 22.73x103 x 0.001x10-6)

Adjust the total resistance of the 18k resistor and the pot to 22.73k.
Again, the actual frequency of the ’567 will depend on CT. With 5-
percent tolerance, we get the same range of possible frequencies as for
the ’555; 38.1 to 42.1 kHz.

Once you get close, you can fine-tune the circuits. Connect the LED and
resistor shown in the figure to the ’567. Temporarily connect pin 4 of the
’555 to +5 volts. When you apply power to the circuits, the LED should
light. If it doesn’t, gradually adjust the pot on the ’555 circuit until it
does. When you’re done, make sure to reconnect pin 4 of the ’555 to
Stamp pin 0. Load and run the program in the listing. For a test run,
point the transducers at the ceiling; a cluttered room can cause a lot of
false echoes. From a typical tabletop to the ceiling, the Stamp should
return echo_time values in the range of 600 to 900. If it returns mostly
0s, try adjusting the RA pot very, very slightly.

Figure 2. Timing diagram of the sonar-ranging process.

Stamp
pin 0

’555
output

’567 output,
Stamp pin 1

pulsout

Time for sound to travel
from transmitter to
receiver plus decode
delay

End of pulse reaches receiver

Decoder turns off

Echoes reach
receiver and are
decoded

pulsin measures this
time—from the end of detection
of the outgoing pulse to the
beginning of the return echoes

pulsin
starts

Page 126 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

How it works. In figure 1, the TLC555 timer is connected as a oscillator;
officially an astable multivibrator. When its reset pin is high, the circuit
sends a 40-kHz signal to the ultrasonic transmitter, which is really just
a specialized sort of speaker. When reset is low, the ’555 is silenced.

In the receiving section, the ultrasonic receiver—a high-frequency
microphone—feeds the CA5160 op amp, which amplifies its signal 100
times. This signal goes to an NE567 tone decoder, which looks for a close
match between the frequency of an incoming signal and that of its
internal oscillator. When it finds one, it pulls its output pin low.

Figure 2 illustrates the sonar ranging process. The Stamp activates the
’555 to send a brief 40-kHz pulse out through the ultrasonic transmitter.
Since the receiver is an inch away, it hears this initial pulse loud and
clear, starting about 74 µs after the pulse begins (the time required for
sound to travel 1 inch at 1130 feet per second). After the ’567 has heard
enough of this pulse to recognize it as a valid 40-kHz signal, it pulls its
output low.

After pulsout finishes, the transmitter continues to ring for a short
time. The purpose of the felt or cloth wrapping on the transmitter is to
damp out this ringing as soon as possible. Meanwhile, the Stamp has
issued the pulsin command and is waiting for the ’567 output to go
high to begin its timing period. Thanks to the time required for the end
of the pulse to reach the receiver, and the pulse-stretching tendency of
the ’567 output filter, the Stamp has plenty of time to catch the rising
edge of the ’567 output.

That’s why we have to damp the ringing of the transmitter. If the
transmitter were allowed to ring undamped, it would extend the
interval between the end of pulsout and the beginning of pulsin ,
reducing the minimum range of the sonar. Also, if the ringing were
allowed to gradually fade away, the output of the ’567 might chatter
between low and high a few times before settling high. This would fool
pulsin into a false, low reading.

On the other hand, if we prevented the receiver from hearing the
transmitter at all, pulsin would not get a positive edge to trigger on.
It would time out and return a reading of 0.

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 127

BASIC Stamp I Application Notes

1

Once pulsin finds the positive edge that marks the end of the NE567’s
detection of the outgoing pulse, it waits. Pulsin records this waiting
time in increments of 10 µs until the output of the ’567 goes low again,
marking the arrival of the first return echo. Using debug , the program
displays this delay on your PC screen.

To convert this value to distance, first remember that the time pulsin
measures is the round-trip distance from the sonar to the wall or other
object, and that there’s an offset time peculiar to your homemade sonar
unit. To calibrate your sonar, carefully measure the distance in inches
between the transmitter/receiver and the nearest wall or the ceiling.
Multiply that number by two for the roundtrip, then by 7.375 (at 1130
feet/second sound travels 1 inch in 73.746 µs; 7.375 is the number of
10-µs pulsin units per inch). Now take a Stamp sonar reading of the
distance. Subtract your sonar reading from the calculated reading.
That’s the offset.

Once you have the offset, add that value to pulsin ’s output before
dividing by 7.375 to get the round-trip distance in inches. By the way,
to do the division with the Stamp’s integer math, multiply the value
plus offset by 10, then divide by 74. The difference between this and
dividing by 7.375 will be about an inch at the sonar’s maximum range.
The result will be the round-trip distance. To get the one-way distance,
divide by two.

Modifications. The possibilities for modifications are endless. For
those who align the project without a frequency counter, the most
beneficial modification would be to borrow a counter and precisely
align the oscillator and tone decoder.

Or eliminate the need for frequency alignment by designing a transmit-
ter oscillator controlled by a crystal, or by the resonance of the ultrasonic
transducer itself.

Try increasing the range with reflectors or megaphone-shaped baffles
on the transmitter and/or receiver.

Soup up the receiver’s amplifier section. The Polaroid sonar unit uses
variable gain that increases with the time since the pulse was transmit-
ted to compensate for faint echoes at long distances.

12: Sonar Rangefinding

Page 128 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Make the transmitter louder. Most ultrasonic transmitters can with-
stand inputs of 20 or more volts peak-to-peak; ours uses only 5.

Tinker with the tone decoder, especially the loop and output filter
capacitors. These are critical to reliable detection and ranging. We
arrived at the values used in the circuit by calculating reasonable
starting points, and then substituting like mad. There’s probably still
some room for improvement.

Many ultrasonic transducers can work as both a speaker and micro-
phone. Devise a way to multiplex the transmit and receive functions to
a single transducer. This would simplify the use of a reflector or baffle.

Parts sources. Suitable ultrasonic transducers are available from All
Electronics, 1-800-826-5432. Part no. UST-23 includes both transmitter
and receiver. Price was $2 at the time of this writing. Marlin P. Jones and
Associates, 1-800-652-6733, stock #4726-UT. Price was $3.95 at the time
of this writing. Hosfelt Electronics, 1-800-524-6464, carries a slightly
more sensitive pair of transducers as part no. 13-334. Price was $3.50 at
the time of this writing.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: SONAR.BAS
' The Stamp runs a sonar transceiver to measure distances
' up to 12 feet.

Symbol echo_time = w2 ' Variable to hold delay time

setup: let pins = 0 ' All pins low
output 0 ' Controls sonar xmitter
input 1 ' Listens to sonar receiver

ping: pulsout 0,50 ' Send a 0.5-ms ping
pulsin 1,1,echo_time ' Listen for return
debug echo_time ' Display time measurement
pause 500 ' Wait 1/2 second
goto ping ' Do it again.

12: Sonar Rangefinding

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 129

BASIC Stamp I Application Notes

1

13: Using Serial EEPROMs

Introduction. This application note shows how to use the 93LC66
EEPROM to provide 512 bytes of nonvolatile storage. It provides a tool
kit of subroutines for reading and writing the EEPROM.

Background. Many designs take advantage of the Stamp’s ability to
store data in its EEPROM program memory. The trouble is that the
more data, the smaller the space left for code. If only we could expand
the Stamp’s EEPROM!

This application note will show you how to do the next best thing; add
a separate EEPROM that your data can have all to itself.

The Microchip 93C66 and 93LC66 electrically erasable PROMs
(EEPROMs) are 512-byte versions of the 93LC56 used as the Stamp’s
program memory. (Before you ask: No, dropping a ’66 in place of the
Stamp’s ’56 will not double your program memory!) Serial EEPROMs
communicate with a processor via a three- or four-wire bus using a
simple synchronous (clocked) communication protocol at rates of up to
2 million bits per second (Mbps).

Data stored in the EEPROM will be retained for 10 years or more,
according to the manufacturer. The factor that determines the EEPROM’s
longevity in a particular application is the number of erase/write
cycles. Depending on factors such as temperature and supply voltage,
the EEPROM is good for 10,000 to 1
million erase/write cycles. For a thor-
ough discussion of EEPROM endur-
ance, see the Microchip Embedded
Control Handbook, publication num-
ber DS00092B, November 1993.

How it works. The circuit in the fig-
ure specifies a 93LC66 EEPROM, but
a 93C66 will work as well. You can
also subsitute the 256-byte ’56, pro-
vided you restrict the highest ad-
dress to 255. The difference between
the C and LC models is that the LC
has a wider Vcc range (2.5–5.5 V,

CS

CK

DI

DO

Vcc

NC

ORG

Vss

93C66

+5

2.2k

22k

Stamp
Pins

0
1
2

6

7

To PC serial in

From PC serial out

Signal ground

512-byte
Serial

EEPROM

Schematic to accompany
EEPROM.BAS.

Page 130 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

versus 4–5.5 V), lower current consumption (3 mA versus 4 mA), and
can be somewhat slower in completing internal erase/write operations,
presumably at lower supply voltages. In general, the LC type is less
expensive, and a better match for the operating characteristics of the
Stamp.

The schematic shows the data in and data out (DI, DO) lines of the
EEPROM connected together to a single Stamp I/O pin. The 2.2k
resistor prevents the Stamp and DO from fighting over the bus during
a read operation. During a read, the Stamp sends an opcode and an
address to the EEPROM. As soon as it has received the address, the
EEPROM activates DO and puts a 0 on it. If the last bit of the address is
a 1, the Stamp could end up sourcing current to ground through the
EEPROM. The resistor limits the current to a reasonable level.

The program listing is a collection of subroutines for reading and
writing the EEPROM. All of these rely on Shout , a routine that shifts
bits out to the EEPROM. To perform an EEPROM operation, the
software loads the number of clock cycles into clocks and the data to
be output into ShifReg . It then calls Shout , which does the rest.

The demonstration program calls for you to connect the Stamp to your
PC serial port, type in up to 512 characters of text, and hit return when
you’re done. Please type this sample text rather than downloading a file
to the Stamp. The Stamp will miss characters of a rapidly downloaded
file, though it’s more than fast enough to keep up with typing. As you
type in your message, the Stamp will record each character to EEPROM.

When you’re finished typing, the Stamp will repeat your text back to the
PC serial port. In fact, it will read all 512 bytes of the EEPROM contents
back to the PC.

If you don’t have the EEPROM data handy (Microchip Data Book,
DS00018D, 1991), you should know about a couple of subtleties. First,
when the EEPROM powers up, it is write protected. You must call
Eenable before trying to write or erase it. It’s a good idea to call
Edisbl (disable writes) as soon as possible after you’re done. Other-
wise, a power glitch could alter the contents of your EEPROM.

13: Using Serial EEPROMs

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 131

BASIC Stamp I Application Notes

1

13: Using Serial EEPROMs

The second subtle point is that National Semiconductor makes a series
of EEPROMs with the same part numbers as the Microchip parts
discussed here. However, the National parts use a communication
protocol that’s sufficiently different to prevent them from working with
these routines. Make sure to ask for Microchip parts, or be prepared to
rewrite portions of the code.

Modifications. If you’re using PBASIC interpreter chips as part of a
finished product, you may be contemplating buying a programmer to
duplicate EEPROMs for production. If you’d prefer to avoid the ex-
pense, why not build a Stamp-based EEPROM copier? Just remember
to include a 2-millisecond delay or read the busy flag between sequen-
tial writes to an EEPROM. This is required to allow the internal
programming process to finish. These topics are covered in more detail
in the EEPROM documentation.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: EEPROM.BAS
' This program demonstrates subroutines for storing data in a
' Microchip 93LC66 serial EEPROM. This program will not work
' with the National Semiconductor part with the same number.
' Its serial protocol is substantially different.

Symbol CS = 0 ' Chip-select line to pin 0.
Symbol CLK = 1 ' Clock line to pin 1.
Symbol DATA = pin2 ' Destination of Shout; input to Shin
Symbol DATA_N = 2 ' Pin # of DATA for "input" & "output"
Symbol ReadEE = $C00 ' EEPROM opcode for read.
Symbol Enable = $980 ' EEPROM opcode to enable writes.
Symbol Disable = $800 ' EEPROM opcode to disable writes.
Symbol WriteEE = $A00 ' EEPROM opcode for write.
Symbol GetMSB = $800 ' Divisor for getting msb of 12-bit no.
Symbol ShifReg = w1 ' Use w1 to shift out 12-bit sequences.
Symbol EEaddr = w2 ' 9-bit address for reads & writes.
Symbol EEdata = b6 ' Data for writes; data from reads.
Symbol i = b7 ' Index counter for EEPROM routines.
Symbol clocks = b10 ' Number of bits to shift with Shout.

output DATA_N ' EEPROM combined data connection.
output CLK ' EEPROM clock.

Page 132 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

output CS ' EEPROM chip select.

' Demonstration program to exercise EEPROM subroutines:
' Accepts serial input at 2400 baud through pin 7. Type a
' message up to 512 characters long. The Stamp will store
' each character in the EEPROM. When you reach 512 characters
' or press return, the Stamp will read the message back from
' the EEPROM and transmit it serially through pin 6
' at 2400 baud.

output 6 ' For serial output.
input 7 ' For serial input.
gosub Eenabl ' Remove EEPROM write protection.
let EEaddr=0 ' Start at 1st (0th) address.

CharIn: serin 7,N2400,EEdata ' Get character.
if EEdata<32 then Done ' If it's return, done.
gosub Ewrite ' Otherwise, write to EEPROM.
let EEaddr=EEaddr+1 ' Increment addr for next write.
if EEaddr=512 then Done ' Memory full? Done.
goto CharIn

Done: gosub Edisbl ' Protect EEPROM.
for w4 = 0 to 511 ' Show all 512 bytes.
let EEaddr = w4 ' Point to EEPROM address.
gosub Eread ' Retrieve the data.
serout 6,N2400,(EEdata) ' Send it out serial port.
next ' Next character.
End ' Demo over.

' Write the data in EEdata to the address EEaddr.
Ewrite: let ShifReg=WriteEE ' Get the write opcode.

let ShifReg=ShifReg|EEaddr ' OR in the address bits.
let clocks = 12 ' Send 12 bits to EEPROM.
high CS ' Chip select on.
gosub Shout ' Send the opcode/address.
let ShifReg = EEdata*16 ' Move bit 7 to bit 11.
let clocks = 8 ' Eight data bits.
gosub Shout ' Send the data.
low CS ' Deselect the EEPROM.
return

' Read data from EEPROM address EEaddr into EEdata.
Eread: let ShifReg=ReadEE ' Get the read opcode.

let ShifReg=ShifReg|EEaddr ' OR in the address bits.
let clocks=12 ' Send 12 bits to EEPROM.
high CS ' Chip select on.
gosub Shout ' Send the opcode/address.
gosub Shin ' Receive the byte.
low CS ' Deselect the EEPROM.

13: Using Serial EEPROMs

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 133

BASIC Stamp I Application Notes

1

return

' Enable writes to the EEPROM. Upon power-up the EEPROM is
' write-protected, so this routine must be called before
' first writing to the EEPROM.
Eenabl: let ShifReg=Enable ' Get the write-enable opcode.

high CS ' Chip select on.
let clocks = 12 ' Send 12 bits to EEPROM.
gosub Shout ' Send the opcode.
low CS ' Deselect the EEPROM.
return

' Disable writes to the EEPROM.
Edisbl: let ShifReg=Disable ' Get the write-disable opcode.

high CS ' Chip select on.
let clocks = 12 ' Send 12 bits to EEPROM.
gosub Shout ' Send the opcode
low CS ' Deselect the EEPROM
return

' Shift data into EEdata.
Shin: input DATA_N ' Change the data line to input.

let EEdata=0 ' Clear data byte.
for i = 1 to 8 ' Prepare to get 8 bits.
let EEdata=EEdata*2 ' Shift EEdata to the left.
high CLK ' Data valid on rising edge.
let EEdata=EEdata+DATA ' Move data to lsb of variable.
low CLK ' End of clock pulse.
next i ' Get another bit.
output DATA_N ' Restore data line to output.
return

' Shift data out of ShifReg.
Shout: for i = 1 to clocks ' Number of bits to shift out.

let DATA=ShifReg/GetMSB ' Get bit 12 of ShifReg.
pulsout CLK,10 ' Output a brief clock pulse.
let ShifReg=ShifReg*2 ' Shift register to the left.
next i ' Send another bit.
return

13: Using Serial EEPROMs

Page 134 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 135

BASIC Stamp I Application Notes

1

14: Networking Multiple Stamps

Introduction. This application note shows how to connect multiple
Stamps together in a simple network. It explains the use of the serout
open-drain and open-source baudmodes.

Background. Many Parallax customers are interested in connecting
multiple Stamps together to form a network. Their applications include
intelligent home control, security sytems, small-scale robotics, and
distributed sensing arrangements. For these applications, the Stamp
has built-in serial networking capabilities requiring a minimum of
external components. Better yet, participation in a network requires
only a couple of lines of Stamp code and one additional I/O line at most.

How it works. The first question that comes to mind is: “Why not just
connect multiple Stamps to one serial port and make them talk one at
a time? That would be a good enough network for most jobs.” That’s
true, for the most part, but the Stamp’s normal serial outputs would
destroy each other. Figure 1 shows why.

In output mode, the Stamp’s I/O pins act like switches connected to the
power-supply rails. When the Stamp outputs a 1, it’s turning on the
switch connected to the +5-volt rail while turning off the one going to
ground. To output a 0, it does the reverse. If you connect multiple Stamp
outputs together, you set up the situation in figure 1b: a direct short to
ground through a pair of Stamp output switches. This would damage
the Stamp’s PBASIC interpreter chip.

Now, before you run
off to design a system
of logic gates or diodes
to fix this, listen up: The
Stamp can be config-
ured to use only one of
the two switches for se-
rial output. This elimi-
nates the possibility of
a short circuit and
opens up the possibil-
ity of network hook-
ups. See figure 2.

+5 +5

One-Stamp serial
hookup, normal

(N2400) baudmode

to serial port
input

Stamp
I/O pin

Consequences of
connecting Stamps
together in normal

baudmode

+5

SHORT TO
GROUND!

a b

Figure 1

Page 136 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 14: Networking Multiple Stamps

To use this technique,
your program should
begin by setting the se-
rial pin to input in or-
der to turn off the out-
put switches. Then,
when it’s time for the
Stamp to put some data
onto the network using
serout , the baudmode
argument should begin
with OT, as in OT2400.
This is known as an open-drain configuration, in honor of the portion
of the PBASIC interpreter’s output MOSFET switch left “open” at the
pin connection.

When connected Stamp pins are in different states there’s no problem,
because no current flows. No data flows, either, because the pins are
incapable of outputting a logical 1 (+5 volts). That’s easily remedied by
adding a pullup resistor, however, as shown in figure 3.

The inverter/line driver shown in figure 3 can either be a CMOS type
like one-sixth of a 74HCT04 or an actual RS-232 line driver, such as a
MAX-232. If the Stamps will be talking to each other instead of reporting
to a host computer, you can eliminate the line driver entirely.

The Stamp also supports an open baudmode that switches to +5 only
instead of ground. This is the open-source configuration, selected by an
argument beginning with ON, such as ON2400. To make this work, you
must reverse the polarity of everything shown in figure 3. The resistor

would go to ground. A
non-inverting buffer (or
additional inverter)
would be used to
straighten out the sig-
nal polarity.

Now that we have a
way to safely connect

One-Stamp serial
hookup, open-drain
(OT2400) baudmode

Stamp
I/O pin

Consequences of
connecting Stamps

together in open
baudmode

a b

no
problem!

Figure 2

+5

1k

True RS-232
or RS-422
output

inverting line
driver IC

multiple pins
driven by open
baudmode (e.g.,
OT2400)

Figure 3

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 137

BASIC Stamp I Application Notes

1

14: Networking Multiple Stamps

multiple Stamp serial pins to a single line, how do we ensure that only
one Stamp talks at once? The possibilities seem endless, and depend
primarily on the nature of the data to be sent through the net. For
example, each Stamp could alternate between talking and listening on
the net. You could use a system of qualifiers that each Stamp would
have to receive via serin before it could transmits onto the net. That
way, one Stamp would send its data, then turn the net over to the next.
That is the approach used in the demonstration programs.

Of course, if you have I/O pins available on each of the Stamps in the
net, you could just have each Stamp wait for a particular logic level to
tell it to transmit. Another approach would be to have one Stamp trigger
its neighbor. As I said, the possibilities go on and on. If you get stuck for
ideas, just look at a diagram of a local-area network (LAN). LAN
designers have invented all kinds of schemes, called “network topolo-
gies,” for determining who talks when. They’ve dreamed up good
names, too, like token rings, stars, hubs, etc.

The example we present is a variation on the token-ring idea. Three
Stamps named Moe, Larry, and Curly will share a single serial line.
When they are first powered up, Moe will transmit a message conclud-
ing with “Larry.” Larry, recognizing his name, will transmit a message
concluding with “Curly.” Curly will transmit a message, concluding
with “Moe.” Moe will start the process all over again. Even though the
Stamps are communicating among themselves, we’ll still use an in-
verter/driver in order to monitor the process with a PC running

Stamp
“Moe”

Stamp
“Larry”

Stamp
“Curly”

+5

1k
1/6th of
74HCT04

1 2

7 7 7

PC or
terminal:
2400bps

N,8,1
+5

14

7

Figure 4. Serial network of Stamps using open-drain output.

Page 138 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 14: Networking Multiple Stamps

terminal software. Figure 4 shows the circuit; the program listing shows
the code used in the Stamps.

For your application, you’d simply substitute a real message (based on
data gathered by the Stamps) for the sample messages. Make sure that
your data messages cannot contain the names of the other Stamps, or
you’ll create chaos. A safe bet is to restrict data to numbers, and names
to text. Make sure that the individual Stamps can gather data quickly
enough to be ready when their names are called. If they’re not ready,
they may miss their cues. This can cause the entire net to hang up.
Likewise, simple failure of one of the Stamps will hang the net. For
critical applications, you might want to consider making one of the
Stamps a supervisor whose job it is to handle these emergencies.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: Moe
' Stamp participant in a simple ring-type network. This Stamp has the job of
' starting the network up by passing an initial message before receiving a cue.
' Thereafter, Moe only transmits when cued by Curly, the last Stamp on the net.

input 7 ' Set pin 7 to input.
pause 1000 ' Give others time to wake up.
serout 7,OT2400,(10,13,"Three ") ' Say the line.
serout 7,OT2400,("Larry",10,13) ' Cue next.

' Now enter the main program loop.
Loop:

serin 7,T2400,("Moe",10,13) ' Wait for cue.
serout 7,OT2400,(10,13,"Three ") ' Say the line.
serout 7,OT2400,("Larry",10,13) ' Cue next.

goto Loop

' Program: Larry
' Stamp participant in a simple ring-type network. Only transmits when cued
' by Moe, the first Stamp on the net.

input 7 ' Set pin 7 to input.

' Main program loop:

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 139

BASIC Stamp I Application Notes

1

Loop:
serin 7,T2400,("Larry",10,13) ' Wait for cue.
serout 7,OT2400,("Blind ") ' Say your line.
serout 7,OT2400,("Curly",10,13) ' Cue next

goto Loop

' Program: Curly
' Stamp participant in a simple ring-type network. Only transmits when cued
' by Larry, the middle Stamp in the net.

input 7 ' Set pin 7 to input.

' Main program loop:
Loop:

serin 7,T2400,("Curly",10,13) ' Wait for cue.
serout 7,OT2400,("Mice ") ' Say your line.
serout 7,OT2400,("Moe",10,13) ' Cue next

goto Loop

14: Networking Multiple Stamps

Page 140 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 141

BASIC Stamp I Application Notes

1

15: Using PWM for Analog Output

Introduction. This application note explains how to convert digital
values to analog voltages using the BASIC Stamp command pwm.

Background. There’s probably some misunderstanding about the
pulse-width modulation (pwm) command. Most Stamp users know that
it generates a waveform whose duty cycle (ratio of on time to off time)
can be varied from 0 to 100 percent by varying the duty input from 0
to 255. But experience with other devices probably leads them to expect
the output to look like figure 1. This is the sort of variable duty cycle

output you get from most timer and counter
circuits.

The Stamp uses a different, more efficient
algorithm to generate pwm. Its output is
just as useful for generating analog volt-
ages, but when displayed on an oscillo-
scope, it can look like a mess; see figure 2.

The proportion of on time to off time is the
same, but instead of being separated into
neat chunks, Stamp pwm is distributed
over a large number of pulses of varying
width.

Without getting too far into the details, the reason is this: The Stamp
generates pwm by adding the duty cycle into an internal variable that
we’ll call the “accumulator.” It doesn’t care
what the accumulator contains, only
whether or not it overflows (generates a
carry-the-one operation). If it does, the pwm
pin goes high; otherwise, low.

The Stamp does this addition quite a few
times. The larger the duty cycle is, the more
often carries occur, and the higher the pro-
portion of highs to lows. However, the car-
ries occur with an irregular rhythm, so the
output waveform, while perfect duty-cycle
pwm, looks like fruit salad on the ’scope.

“PWM”

20% on

80% off

Figure 1. What
users think pwm

looks like.

“PWM”

total off = 80%

total on = 20%

Figure 2. What pwm
really looks like.

Page 142 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 15: Using PWM for Analog Output

Using pwm. The primary application
for pwm is to generate a voltage from 0
to 5 volts proportional to the duty cycle.
An even simpler use is to control the
brightness of an LED. See figure 3.

If, as shown in the figure, the LED is
connected to pin 0, the following frag-
ment of a Stamp program will gradu-
ally raise the brightness of the LED
from off to fully on:

low 0 ' LED completely off.
for b2 = 0 to 255 ' Loop from off to on.

pwm 0, b2,1 ' Output one burst of pwm.
next
high 0 ' Leave LED on.

Although the Stamp is sending a stream of 1s and 0s to the LED, it
appears to be steadily on at varying levels of brightness. That’s because
your eyes integrate (smooth) the rapid flickering, just as they do the
frames of a movie or television picture.

If you look at the pwm writeup in the Stamp manual, you’ll see that in
most applications you need a resistor and capacitor to integrate the
output to a smoothly varying voltage. What the manual doesn’t show
is the effect that connected circuits can have on a simple resistor/
capacitor (RC) integrator.

The fact is that if you try to draw too much current from the RC circuit,
your program will have to output many cycles of pwm, and do so quite
often in order to maintain the charge on the capacitor. Otherwise, the
voltage level set by pwm will begin to droop.

Figure 4 shows one way to overcome this. The CA5160E operational
amplifier (op amp) has an extremely high input impedance, so it draws
very little current from the capacitor. Since its gain is set to 1 by the
accompanying components, the voltage at its output is the same as the
voltage at its input, with one big exception: The current drawn from the

470
Stamp

pin 0 LED

Figure 3. Controlling
the brightness of an

LED with pwm.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 143

BASIC Stamp I Application Notes

1

15: Using PWM for Analog Output

CA5160

0.1µF

2k

+5

7

4
6

2

3
10k

–

+

100k
pot

1
5

4.7k

0.47µF

Stamp
pwm

output

Stiff
voltage
source

Figure 4. Example op-amp buffer circuit.

output of the op amp does not affect the charge on the capacitor in the
RC integrator.

According to the op amp’s specs, you can draw up to 12 mA from its
output. Other op amps may offer higher current outputs, but make sure
to check all the specifications. The CA5160 was used here because it is
happy operating from a 5-volt, single-ended supply. Supply current is
typically 50 µA (ignoring current drawn from the output). Other op
amps may require split supplies of ±15 volts or more.

To drive the op-amp circuit properly, the pin used for pwm output must
actually be defined as an input. This ensures that once pwm establishes
a voltage level on the capacitor it disconnects itself from the circuit. The
code we used to set the circuit to approximately 2.5 volts is:

input 0 ' Make pin 0 an input.
pwm 0, 127,1 ' Output one burst of pwm.

In our tests, one burst of pwm was sufficient to charge the capacitor to
the desired voltage. Once set, the voltage at the op amp’s output
(driving a 1k resistor load) remained steady for more than 15 minutes.
It actually drifted slowly upward, probably due to slight current

Page 144 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 15: Using PWM for Analog Output

leakage from the Stamp I/O pin. In a real application, you should try to
reestablish the voltage level more often than once every 15 minutes.

A few final notes about the circuit. The 100k pot allows you to fine-tune
the op amp’s output offset. Connect the circuit with an accurate voltme-
ter at the output. Program the Stamp to kick out a burst of PWM. The
voltage appearing at the op amp output should be (duty/255) times the
supply voltage (5 volts from the Stamp’s regulated supply). So if the
duty is 127, the output voltage should be (127/255) * 5 = 2.49 volts.
Adjust the pot until the actual voltage agrees with your calculation.

You may find that your op amp won’t track the input voltage all the way
to +5 volts. One solution is to simply ignore this limitation, and just
work within the range you do get. Another is to connect the + supply
pin of the op amp (pin 7) to unregulated +9 volts from the battery. As
the battery dies, you’ll eventually have the same problem again, but
you will get rail-to-rail performance for most of the battery’s life.

Program listing. There’s no program listing this time; however, you
may download programs for other application notes our Internet ftp
site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 145

BASIC Stamp I Application Notes

1

16: Keeping Stamp Programs Private

Introduction. This application note explains how to use the BASIC
Stamp directive bsave and the program BSLOAD.EXE to enable custom-
ers to update Stamp programs without access to the source code. It also
shows a method by which the Stamp can reload its own program
memory from data received over RS-232.

Background. Try this: Phone Microsoft and tell them you own Excel™
or another product of theirs, and you’d like a copy of the source code.
Be generous; tell them you are willing to pay for the disks and the
shipping charges.

You’ll probably find out how people working at a big corporation react
to pranks. You’ll also learn a lot of new ways to gently say “no.”

If you want to keep your Stamp source code private, but still allow
customers to download alternative functions, change EEPROM data, or
update firmware, you need to know about bsave .

Using bsave. When you run a Stamp program using the latest versions
of STAMP.EXE, the software looks for the directive bsave on a line by
itself anywhere in the source-code listing. If bsave is present, the
software saves a 256-byte file called CODE.OBJ to the current directory.
That file contains a copy of the binary data written to the Stamp’s
EEPROM. You can rename and distribute that file, along with a pro-
gram called BSLOAD.EXE that’s available from the Parallax bulletin-
board system.

If you renamed your code file UPDATE.OBJ (it’s smart to retain the
extension .OBJ because that is the default recognized by BSLOAD) you
could distribute it, the BSLOAD software, and a Stamp cable to your
customer. Instruct the customer to connect the cable from a PC to the
Stamp-based product, connect power, and type BSLOAD UPDATE. A
status message appears on the screen to indicate the success of the
download.

This technique eliminates the need to distribute your source files and
STAMP.EXE in order to update Stamp firmware.

Page 146 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 16: Keeping Stamp Programs Private

Self-replacing programs. This is going to sound like do-it-yourself
brain surgery, but it’s possible to write Stamp programs that replace
themselves in EEPROM program memory. This means you can down-
load a new program to the Stamp via a serial link.

Program listings 1 and 2 are examples of self-replacing programs. The
trick lies in the fact that both contain identical startup code. This code,
with the assistance of the serial hookup depicted in the figure, deter-
mines whether or not a serial output is connected to the Stamp at
startup. If no serial connection is present, the Stamp goes about its
business—in the cases of list-
ings 1 and 2, flashing an LED in
two different ways. If a serial
connection is present at startup,
the Stamp receives 256 bytes of
data and uses them to replace
the entire contents of its
EEPROM.

This means that the program
overwrites itself. It doesn’t
crash, however, because the re-
placement program contains the same code in the same place; at the
very beginning of the program.

Listing 3 is a QBASIC program that performs the serial downloading.
You may copy and modify this program to fit your own requirements.
When you write your own version, be sure to note that QBASIC must
open the .OBJ file as binary data. Otherwise, chances are good that a
control-Z character (ASCII 26) somewhere in the .OBJ file would cause
QBASIC to end the download.

Here’s how to make this demonstration work: Construct the circuit
shown in the figure, but do not connect your PC’s serial port to the
Stamp yet. Load and run the Stamp program THROB.BAS. Because the
file contains bsave , the Stamp software will write its binary image to
the file CODE.OBJ. Make a mental note of the DOS path to this file; you’ll
need it for the downloading step. Next load and run BLINK.BAS. Since it
does not contain bsave , this will not generate an object file.

330Ω

LED

Stamp pin 0

Stamp pin 7

47k

+5

22k
PC serial out
(DB9 = pin 3
DB25 = pin 2)

PC signal gnd
(DB9 = pin 5
DB25 = pin 7)

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 147

BASIC Stamp I Application Notes

1

16: Keeping Stamp Programs Private

Now, quit the Stamp software and disconnect the Stamp from its
battery or power supply. Remember, the Stamp only looks for the serial
connection at startup, otherwise, it goes into its normal loop.

Boot QBASIC or QuickBASIC and load the program REPROG.BAS. Before
you run the program, type your path name into the command
OPEN "D:\CODE.OBJ" FOR BINARY AS #1 . Connect the PC’s serial
output as indicated in the figure and apply power to the Stamp. Now
run the program.

As the download proceeds, the program will display the current byte
number on the screen of your PC, and the Stamp will blink its LED in
time to the arriving data. A large FOR/NEXT delay has been added to the
downloading loop to prevent it from outrunning the EEPROM pro-
gramming process.

When the download is over, the Stamp will begin running THROB.BAS.
If you like, you can create an object file of BLINK.BAS and follow the
procedures above to replace THROB. Or you can write your own pro-
gram, include the downloading code, and replace either program with
your program.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Listing 1: Blink.BAS
' This program can replace itself with a new program
' downloaded via a serial connection. It is part of a
' demonstration described in Stamp application note 16.
if pin7 = 1 then Loop ' No serial hookup so skip.
for b2 = 255 to 0 step -1 ' Download 256 bytes

serin 7,N2400,b4 ' Get a byte.
write b2,b4 ' Write to EEPROM.
toggle 0 ' Flash LED.

next

Loop: ' Main program loop:
toggle 0 ' blink LED.
pause 50

goto Loop

Page 148 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Listing 2: Throb.BAS
' This program can replace itself with a new program
' downloaded via a serial connection. It is part of a
' demonstration described in Stamp application note 16.
if pin7 = 1 then Loop ' No serial hookup so skip.
for b2 = 255 to 0 step -1 ' Download 256 bytes

serin 7,N2400,b4 ' Get a byte.
write b2,b4 ' Write to EEPROM.
toggle 0 ' Flash LED.

next

Loop: ' Main program loop:
for b2 = 0 to 255 step 5 ' make LED "throb"
pwm 0,b2,1 ' by varying its brightness
next ' using pwm.
for b2 = 255 to 0 step -3
pwm 0,b2,1
next

goto Loop

' Listing 3: REPROG.BAS (NOT a Stamp program)
' This is a QBASIC program that will download a Stamp
' object file via an RS-232 serial hookup. Be sure to
' enter the correct path to your CODE.OBJ file in the
' OPEN command below.
DEFINT A-Z:CLS
DIM code(255) AS INTEGER
' Load the contents of the CODE.OBJ into a variable.
' Replace "D:\CODE.OBJ" with your file's path.
OPEN "D:\CODE.OBJ" FOR BINARY AS #1
FOR i = 0 TO 255

code(i) = ASC(INPUT$(1, 1))
NEXT i
CLOSE #1
' Send the code bytes out the serial port.
OPEN "COM1:2400,N,8,1,CD0,CS0,DS0,OP0" FOR RANDOM AS #1
FOR i = 0 TO 255

CLS: PRINT "Sending: "; i
PRINT #1, CHR$(code(i));
FOR j = 1 TO 20000: NEXT j ' Large delay.

NEXT i
CLOSE #1
END

16: Keeping Stamp Programs Private

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 149

BASIC Stamp I Application Notes

1

17: Solar-Powered Stamp

Introduction. This application note shows how to operate the Stamp 24
hours a day from the power provided by a 1.5" x 2.5" solar battery. The
example application takes outdoor temperature measurements every
12 seconds, then relays them to a computer indoors via an infrared link.

Background. A standard 9-volt battery can power the Stamp for a long
time with the use of the sleep and nap commands. But eventually the
battery will die, if only from old age.

Although it’s usually no problem to just replace the battery, there are
applications that require long periods of unattended operation. Imag-
ine a mountaintop weather station, forest wildlife counter, or floating
sensor buoy, drifting in the currents at sea. Now imagine the cost of
mounting an expedition to replace the Stamp’s battery. Whew!

There are also less exotic places in which independence from batteries
would be a good idea. How about pollution-measuring instruments at
the top of a pole, or an electronic bicycle speedometer?

Schematic to accompany program SOLAR.BAS

PC
RS-232
input

CMOS inverter
(1/6 74HCT04)

Trigger
GND

Output

TLC555

1

Threshold

Discharge

Reset

Control VDD

85

4

10k

0.001µF

1k7

6

2

3

220Ω

2N2222

IR LED

Stamp
pin 2 +5

3
2
1

4.7k

+5

10k

5k pot
(adjust for

40kHz)

0.1µF

10k
thermistor
(Radio
Shack
271-110)

Stamp
pin 0

Stamp
pin 1

High-efficiency solar cell
(Edmund G52,169)

RED

BLK

Stamp
+9V

1-Farad, 5.5 V Super Cap
(Digi-Key P6955)

Stamp
+5V

GP1U52X
(Radio
Shack

276-137)

Page 150 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Solar batteries can solve these problems, but only during the daytime.
At night, the Stamp would have to run off an alternative power source,
such as a rechargeable battery. However, rechargeables are notoriously
fussy about proper care and feeding, which might become more of a job
than the Stamp’s primary mission.

In keeping with the minimalist philosophy of the Stamp itself, we
decided to try the simplest conceivable combination of round-the-clock
power; a solar battery and a really big capacitor.

How it works. For a trial application, we borrowed from two previous
application notes. We took the thermistor temperature measurement
scheme of note #7 and wedded it to the infrared communication setup
of note #11. That way, we could show that the Stamp and some fairly
current-hungry peripherals could both share our 24-hour power source.
See the schematic.

For our test of the project, the Stamp, 40-kHz transmitter, and super
capacitor were mounted outdoors in a small cardboard box taped to a
window on the shady side of a building. The box helped protect the
circuit from the elements, and provided a dark background for the IR
LED. The solar battery was mounted outside the box, angled upward.
On the indoor side of the window, a breadboard holding the IR receiver,
CMOS inverter and power supply was pointed at the IR LED on the
other side of the glass.

The project works like this: Every 12 seconds the Stamp takes a tempera-
ture reading by executing a pot command on pin 0, the pin to which the
thermistor is connected. It converts the resulting byte of data into the
current temperature using the power-series technique described in app
note #7. Then the Stamp applies power to the ’555 transmitter circuit.
The Stamp sends a byte of data at 1200 baud to the pin 4 of the ’555,
causing it to transmit the data as an on/off-keyed 40-kHz infrared
signal.

The infrared remote-control receiver (GP1U52X) converts the modu-
lated light beam back into bits. A CMOS inverter reverses the polarity
of the bits and provides sufficient voltage swing for reception through

17: Solar-Powered Stamp

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 151

BASIC Stamp I Application Notes

1

17: Solar-Powered Stamp

a PC serial port. The PC receives the data, adds a time tag, and records
it to a file on the hard drive.

When the serial transmission is done, the PIC turns off the ’555 and goes
to sleep for another 12 seconds.

From the standpoint of the project’s solar power source, there isn’t
much to explain. The specified solar battery produces up to 10 volts at
9 mA in direct sunlight, or 8 volts and 0.075 mA in typical indoor
lighting. We split the difference and mounted the battery outdoors on
the shady side of a building. At noon in this location we got 10 volts at
about 1 mA.

Before installing the 1-Farad super capacitor, we charged it to about
4 volts by leaving it connected to a 5-volt power supply through a 4.7k
resistor for several hours. This limited the amount of charging current
that the capacitor would demand from the Stamp’s voltage regulator
when first connected. Once the capacitor was installed, the solar battery
kept it charged.

We ran the project ’round the clock for several days, periodically
reviewing the time-tagged data files for breaks or erratic data that
would indicate a power failure. None occurred. The lowest voltage
across the super cap, which occurred after about 10 hours of darkness,
was 3.65 volts, just enough to keep the Stamp going. Less than an hour
after sunrise the cap would charge back up to 5 volts.

The solar battery has plenty of excess capacity for this type of applica-
tion. An interesting challenge would be to find ways to exploit this. For
example, in a telemetry application, the Stamp might store data over
night, then transmit it during daylight when power would be abun-
dant.

Parts sources. The solar battery is available from Edmund Scientific,
609-573-6250. The super cap is available from Digi-Key, 800-344-4539.
Many of the other components used in the circuit are available from
Radio Shack electronics stores.

Program listing. These programs may be downloaded from our Internet

Page 152 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: SOLAR.BAS
' Program to demonstrate that the Stamp can operate 24 hours a day
' from a solar battery and 1-Farad memory-backup capacitor (super
' cap). Every 12 seconds the Stamp wakes up, takes a temperature
' reading from a thermistor, converts it to degrees F and
' transmits it (as a single byte of data) over a 1200-bps
' infrared link.

' Coefficients for the thermistor conversion/linearization routine.
' For more information, see Stamp app note #7.
Symbol co0 = 171 ' Adjusted to match capacitor.
Symbol co1top = 255
Symbol co1btm = 2125
Symbol co2bt1 = 25
Symbol co2top = 3
Symbol co2btm = 50

' Change pins 1 and 2 to outputs and take them low. Pin 1 controls
' power to the '555 timer/40-kHz transmitter. Pin 2 is serial output
' to the 40-kHz transmitter.
low 1:low 2

' Main program loop.
Loop:
' Take a thermistor measurement using pot.

pot 0,46,w0
' Linearize it and convert to degrees F with the equation from
' Stamp application note #6.

let w1 = w0*w0/co2bt1*co2top/co2btm
let w0 = w0*co1top/co1btm+w0
let w0 = co0+w1-w0

' Now turn on the '555 timer and give it a little time to get ready.
high 1
pause 100

' Transmit the data.
serout 2,N1200,(b0)

' Turn off the '555.
low 1

' Go back to sleep.
sleep 10

goto Loop

17: Solar-Powered Stamp

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 153

BASIC Stamp I Application Notes

1

' Program DATA_LOG.BAS
' This is a QBASIC program to display and record the data
' from the Stamp program SOLAR.BAS. To quit this program,
' either press control-break, or press any key and wait
' for the next Stamp transmission.

DEFINT A-Z
OPEN "com1:1200,N,8,1,CD0,CS0,DS0,OP0" FOR INPUT AS #1
OPEN "c:\data.log" FOR OUTPUT AS #2
CLS
Again:

 temp$ = INPUT$(1, 1)
 PRINT ASC(temp$); CHR$(9); TIME$
 PRINT #2, ASC(temp$); CHR$(9); TIME$

IF INKEY$ = "" THEN GOTO Again
CLOSE
END

17: Solar-Powered Stamp

Page 154 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 155

BASIC Stamp I Application Notes

1

18: One Pin, Many Switches

Introduction. This application note shows how to read multiple switches
through a single input/output (I/O) pin by using the pot command.

Background. If your BASIC Stamp application needs to check the
status of more than a few switches, you have probably considered using
external hardware to do the job. The trouble is that most hardware
solutions still use more than one I/O pin, and often require consider-
able program overhead.

Now, consider the pot command. It reads a resistance and returns a
proportional number. What if you wired your switches to vary the
resistance measured by pot? With an appropriate lookup routine, you’d
be able to determine which switch was pressed.

That’s exactly the method we’re going to demonstrate here.

How it works. As the figure shows, we wired up eight switches and
eight 1k resistors in a sort of pushbutton-pot arrangement. When no
switch is pressed, the circuit’s resistance is the sum of all of the resistors
in series; 8k. If you press the switch closest to the pot pin (S0), the
network is shorted out, so the resistance is 0. Press S1, and the resistance
is 1k. And so on.

To see this effect in action, follow these steps: Wire up the circuit in the
figure, connect the Stamp to your PC, run STAMP.EXE, and press ALT-P
(calibrate pot). Select the appropriate I/O pin; in this case pin 0. The PC
screen will display a dialog box showing a suggested value for the pot
scale factor—the number that ensures a full-scale response for the
connected combination of the resistor(s) and capacitor.

Schematic to accompany program MANY_SW.BAS

1k 1k 1k 1k 1k 1k 1k 1k

S0 S1 S2 S3 S4 S5 S6 S7

0.1µF

Stamp pin 0

Page 156 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 18: One Pin, Many Switches

Press the space bar to lock in the scale factor. Now the screen displays
the actual value returned by the pot command. Press the switches and
watch the value change. Write down the scale factor and the numbers
returned by pressing S0 through S7. As you do so, you’ll notice that the
numbers vary somewhat. They tend to be steadier in the lower resis-
tance ranges, and jumpier at higher resistances. Write down the highest
number returned for each switch.

Armed with this calibration data, you can write PBASIC code to
determine which switch was pressed just by looking at the pot value.
The program listing shows an example. We took the numbers recorded
in the step above, added a fixed amount to each, and put them in a
lookup table. To identify a switch by its resistance value, the program
starts searching at the lowest resistance, represented by switch 0. The
program asks, “is this resistance less than or equal to the lookup entry
for switch 0?” If it is, then switch 0 was pressed; if not, the program
increments the switch number and repeats the question until it deter-
mines which switch was pressed.

In creating the lookup table, we added 10 to the maximum value for
each of the switches. This serves as a safety margin to prevent errors in
case the capacitance and resistance values wander a bit with tempera-
ture.

This scheme has some drawbacks, mostly related to the way pot works.
Pot makes resistance readings by charging up the capacitor, then
gradually discharging it through the series-connected pot or resistor.
By measuring the time required to discharge the cap, pot can provide
a pretty accurate estimate of the relative resistance. This process takes
several milliseconds to complete.

If one of the switches is pressed during the pot timing cycle, the rate at
which the capacitor discharges will change. The pot measurement will
be wrong, and the switch number returned by the program will be
wrong. To guard against this, the program ignores the first several
readings after an initial switch closure. This isn’t completely foolproof,
but it makes misidentified switches a relatively rare event.

Another potential drawback is that the program cannot detect more

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 157

BASIC Stamp I Application Notes

1

18: One Pin, Many Switches

than one switch closure at a time. If two switches are closed at the same
time, the program will correctly identify the lower of the two switches.
For example, if switches 2 and 5 are both closed, the program will
recognize switch 2. You can understand this by analyzing the circuit.
Switch 2 effectively shorts out all of the resistor/switch network
beyond itself. Additional closed switches have no effect.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

' Program: MANY_SW.BAS (Read switches with POT command)

' This program illustrates a method for reading eight switches using
' one I/O pin by using the POT command. The switches are wired as
' shown in the accompanying application note to cut out portions of
' a network of series-connected 1k resistors. The POT command reads
' the resulting resistance value. The subroutine ID_sw compares the
' value to a table of previously determined values to determine
' which switch was pushed.

Clear: ' Clear counter that determines how many
let b0 = 0 ' readings are taken before switch is ID'ed.

Again:
pot 0,148,b2 ' Take the resistance reading.
if b2 >= 231 then Clear ' Higher than 230 means no switch pushed.
goto ID_sw ' Value in range: identify the switch.

Display:
debug b3 ' Show the switch number on PC screen.

goto Clear ' Repeat.

' ID_sw starts with the lowest switch-value entry in the table (the 0th
' entry) and compares the POT value to it. If the POT value is less than
' or equal, then that's the switch that was pushed. If it's not
' lower, the routine checks the next switch-value entry.

' There's nothing magical about the switch values in the table below. They
' were obtained by pressing the switches and recording their POT
' values, then adding an arbitrary amount--in this case 10. The idea
' was to select numbers that would always be higher than the highest
' POT value returned when the corresponding switch was pressed, but
' lower than the lowest value returned by the next switch. This keeps

Page 158 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' the comparison/search required to identify the switch as simple as
' possible.

ID_sw:
if b0 > 8 then skip ' Take 8 readings before trying to
b0 = b0+1 ' identify the switch.
goto Again

skip:
for b3 = 0 to 7 ' Compare table entries to the current reading.

lookup b3,(10,45,80,114,146,175,205,230),b4
if b2 <= b4 then done ' Match? Then done.

next
done: goto Display ' Switch identified; display its number.

18: One Pin, Many Switches

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 159

BASIC Stamp I Application Notes

1

19: Using Button Effectively

Introduction. This application note explains the button command and
presents an example program that uses button in its immediate and
delay/autorepeat modes.

Background. The idea is simple enough—a single command allows
your PBASIC programs to read and debounce a switch. However,
button’s myriad features and its lack of an equivalent in other BASIC
dialects have led to considerable misunderstanding among Stamp
users. An explanation is in order.

First of all, button is intended to be used inside a loop. The idea is that
the program goes about its normal business, periodically checking the
state of the button. If conditions set up by the button command are met,
then the program goes to the address included in the button command.

Second, we should define a slippery
term that’s important to understand-
ing what button does. That term is
“debounce.” When you press a
switch, the contacts smack into each
other with the action of a micro-
scopic earthquake. For several milli-
seconds they bounce and shudder
and grind against one another be-
fore finally settling into solid con-
tact. This bouncing shows up as sev-
eral milliseconds of rapid on/off
switching that can be detected by a
relatively fast device like the Stamp.

In order to keep switch bounce from
seeming like several deliberate
switch presses, the button command
ignores these very rapid changes in
the switch state. So, when we talk
about switch “debouncing” in the
discussions that follow, we mean
button’s effort to clean up the switch
output.

10µF

+5

470

470

470

470

470

Tune 0

Tune 1

Tune 2

Tune 3

Tune 4

10k (both)

Play

Select

40Ω

Stamp
pins

7

6

5

4

3

2

1

0

Schematic to accompany
program listings 1 and 2.

Page 160 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

Now, let’s take a look at the parameters of button in detail. The syntax,
as described in the instruction manual, is this:

BUTTON pin,downstate,delay,rate,bytevariable,targetstate,address

Pin is a variable or constant in the range of 0 to 7 that specifies which pin
the button is connected to. Remember to use the number of the pin and
not its pin name (e.g., Pin3 or Pins.3). The pin name will return the state
of the specified pin (0 or 1), which is probably not what you want.

Downstate is a variable or constant that specifies what state the button
will be in (0 or 1) when it is pressed.

Delay is used with button’s autorepeat capability. If you hold down the
A key on your PC keyboard, there’s a small pause before the PC goes
into machine-gun mode and starts rapidly filling the screen with
AAAAAAA... With button, delay sets the length of this pause as a
variable or constant number of loops (1 to 254) through the button
command. So, if you set delay to 100, your Stamp program must loop
through the button command 100 times after the initial press before
autorepeat will begin. How long will this take? It depends on your
program. If the delay is too short for your taste, insert a short pause in
the loop that contains the button command.

You can also use the delay setting to change the way button works. A
delay of 0 turns off debounce and autorepeat. A delay of 255 turns on
debounce, but turns off autorepeat.

Rate is a variable or constant that specifies how fast the autorepeat will
occur. Like delay, it is also specified in terms of the number of loops
through the button command.

Bytevariable is button’s workspace—a variable in which button stores
the current state of the delay or rate counters. Make sure to give each
button command you use a different workspace variable, or your
buttons will interact in bizarre and undesirable ways. Also make sure
that byte variables used by button commands are cleared to 0 before
they are first used. After that, button will take care of them.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 161

BASIC Stamp I Application Notes

1

19: Using Button Effectively

Targetstate is a variable or constant (0 or 1) that specifies whether the
program should take action when the button is pressed (1), or when it’s
not pressed (0). Why the heck would you want to go to some address
when the button isn’t pressed? In some cases, it’s simpler to skip over
part of your program unless the button is pushed. This reverse logic can
be a little hard to get used to, but it can help reduce the “spaghetti code”
of multiple gotos for which BASIC is so frequently condemned.

Address is the program label that you want to go to when all of the
conditions set by the button command are met.

To illustrate how all of these parameters make button work, we’ve
designed a sample application called BTN_JUKE.BAS. It’s a five-selection
jukebox that uses one button to select which tune to play by scrolling
through five LEDs, and a second button to trigger the currently selected
tune.

How it works. The circuit in the figure should be pretty self-explana-
tory, but note that the switches are wired so that the Stamp pins see
highs (+5 volts) when the switches are open and lows (0 volts) when
they’re pressed.

Now look at listing 1. The program begins by defining the variable
Select, which will hold the number of the currently selected tune. It then
sets up the pins’ I/O directions. It clears both of the byte variables that
will be used in the button commands (b0 and b1) at one time by clearing
the word variable to which they belong (w0). As a final setup step, it
turns on the LED corresponding to a selection of 0.

The program then enters its main loop containing the button com-
mands. The first is:

button 7,0,0,0,b0,0,no_play

This command translates to: “Read the button on pin 7. When it is
pressed, there will be a logical 0 on the pin. Don’t debounce or autorepeat
(delay = 0). With autorepeat turned off, rate doesn’t matter, so set it to
0. Use b0 as your byte workspace. When the button is not pressed (0), go
to no_play.”

Page 162 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

So as long as the button is not pressed, the button command will skip
over the code that plays the selected tune. When the button is pressed,
the tune will play.

This button command doesn’t require debounce or autorepeat, because
the tunes are relatively long. By the time a tune is finished playing, the
user has probably already released the button. If he hasn’t, the tune will
simply play again without delay.

The second button command is:

button 6,0,200,60,b1,1,Pick

This translates to: “Read the button on pin 6. When it is pressed, there
will be a logical 0 on the pin. Debounce the switch and delay 200 cycles
through this command before starting autorepeat. Once autorepeat
begins, delay 60 cycles through button between repeats. Use b1 as a
workspace. When the button is pressed (1) go to the label Pick.”

From the user’s standpoint, this means that a single press of the select
button lights the next LED in the sequence. Holding down the button
makes the LEDs scan rapidly. Releasing the switch causes the currently
lit LED to remain on.

It’s hard to describe what an important difference debounce and
autorepeat make in the ease and quality of a user interface. The best way
is to offer a comparison. Listing 2 is the same jukebox program as listing
1, but without the button command to debounce the switches. It uses
the same circuit as listing 1, so you can alternately download the two
programs for an instant comparison.

When you run NO_BTN.BAS, you’ll find no difference in the operation of
the play button. Remember that button’s debounce and autorepeat
features were turned off in the original program anyway. If you need to
economize on variables, you can substitute a simple if/then for button in
cases that don’t use these features.

The select button is a different story. It becomes almost impossible to
select the LED you want. To make the comparison fair, we even added

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 163

BASIC Stamp I Application Notes

1

a brief pause to the Pick routine as a sort of debouncing. It helps, but not
enough to make the button action feel solid and predictable. This is the
kind of case that requires button.

Program listing. These programs may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

19: Using Button Effectively

Listing 1: BTN_JUKE.BAS (Demonstration of the Button command)

' The Stamp serves as a tiny jukebox, allowing you to pick from one of
' five musical (?) selections created with the sound command. The point
' of the program is to demonstrate the proper way to use the button
' command. The juke has two buttons--one that lets you pick the tune
' by "scrolling" through five LEDs, and the other that plays the tune
' you selected. The selection button uses the debounce and autorepeat
' features of button, while the play button is set up for immediate
' response without delay or autorepeat.

SYMBOL Select = b2 ' Variable to hold tune selection, 0-4.

let dirs = %00111111 ' Pins 6 & 7 are inputs for buttons.
let w0 = 0 ' Initialize all variables to zero
let w1 = 0 ' (includes clearing the button variables b0,b1)
let pins = %00000010 ' Turn on the first selection LED.

' The main program loop. Main scans the two buttons and branches to
' no_play or Pick, depending on which button was pressed. Note the two
' different ways the button command is used. In the first case,
' button skips over the branch instruction that jumps to the
' appropriate tune routine _unless_ the button is pushed.
' The tunes are fairly long, so no debounce is needed, and
' autorepeat isn't appropriate (the next trip through main will
' play the tune again, anyway). The second button command, which
' scrolls through the selection LEDs, uses both debounce and auto-
' repeat. Switch bounce could cause the display to seem to skip
' over selections, and autorepeat is a nice, professional touch
' for rapidly scrolling through the display.

Main:
 button 7,0,0,0,b0,0,no_play ' Don't play tune unless button is pushed.
 branch Select,(Tune0,Tune1,Tune2,Tune3,Tune4)
no_play:
 button 6,0,200,60,b1,1,Pick ' When button is pushed, change selection.
goto Main

Page 164 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 19: Using Button Effectively

' Pick increments the variable Selection, while limiting it to a maximum
' value of 4. If Selection exceeds 4, the code resets it to 0.

Pick:
 let Select = Select + 1 ' Increment selection.
 if Select < 5 then skip ' If Select = 5, then Select = 0.
 let Select = 0 ' Skip this line if Select is < 3.
skip:
 lookup Select,(2,4,8,16,32),pins ' Light appropriate LED.
goto Main ' Return to main program loop.

' The tunes. Not necessarily music.

Tune0: sound 0,(100,10,110,100): goto main

Tune1: sound 0,(98,40,110,10,100,40): goto main

Tune2: sound 0,(100,10,80,100): goto main

Tune3: sound 0,(100,10,110,50,98,10): goto main

Tune4: sound 0,(98,40,100,10,110,40): goto main

' Listing 2: NO_BTN.BAS (Demonstration of poor debouncing)

' This program is identical to BTN_JUKE.BAS, except that it does not
' use button commands to read the state of the switches. Contrasting
' the operation of this program to BTN_JUKE will give you a good idea
' of the benefits of button.

' The Stamp serves as a tiny jukebox, allowing you to pick from one of
' five musical (?) selections created with the sound command. The point
' of the program is to demonstrate the proper way to use the button
' command. The juke has two buttons--one that lets you pick the tune
' by "scrolling" through five LEDs, and the other that plays the tune
' you selected.

SYMBOL Select = b2 ' Variable to hold tune selection, 0-4.

let dirs = %00111111 ' Pins 6 & 7 are inputs for buttons.
let b2 = 0 ' Clear the selection.
let pins = %00000010 ' Turn on the first selection LED.

' The main program loop. Main scans the two buttons and takes the
' appropriate action. If the play button on pin 7 is not pressed,
' the program skips over the code that plays a tune. If the select

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 165

BASIC Stamp I Application Notes

1

' button is pressed, the program goes to the routine Pick, which
' increments the current tune selection and LED indicator.

Main:
 if pin7 = 1 then no_play ' Don't play tune unless pin 7 button is pushed.
 branch Select,(Tune0,Tune1,Tune2,Tune3,Tune4)
no_play:
 if pin6 = 0 then Pick ' When pin 6 button is pushed, change tune.
goto Main

' Pick increments the variable Selection, while limiting it to a maximum
' value of 4. Note that it begins with a pause of 0.15 seconds. This
' prevents the code from executing so fast that the LEDs become a blur.
' However, it's no substitute for the button command. You'll find that
' it is hard to select the particular LED you want.

Pick:
 pause 150 ' Attempt to debounce by delaying .15 sec.
 let Select = Select + 1 ' Increment selection.
 if Select < 5 then skip ' If Select = 5, then Select = 0.
 let Select = 0 ' Skip this line if Select is < 3.
skip:
 lookup Select,(2,4,8,16,32),pins ' Light appropriate LED.
goto Main ' Return to main program loop.

' The tunes. Not necessarily music.

Tune0: sound 0,(100,10,110,100): goto main

Tune1: sound 0,(98,40,110,10,100,40): goto main

Tune2: sound 0,(100,10,80,100): goto main

Tune3: sound 0,(100,10,110,50,98,10): goto main

Tune4: sound 0,(98,40,100,10,110,40): goto main

19: Using Button Effectively

Page 166 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 167

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

Introduction. This application note describes an inexpensive and
accurate timebase for Stamp applications.

Background. The Stamp has remarkable timing functions for dealing
with microseconds and milliseconds, but it stumbles a little when it
comes to minutes, hours, and days.

The reason for this is twofold: First, the Stamp’s ceramic resonator
timebase is accurate to about ±1 percent, so the longer the timing
interval, the larger the error. A clock that was off by 1 percent would
gain or lose almost 15 minutes a day.

Second, Stamp instructions take varying amounts of time. For example,
the Pot command reads resistance by measuring the length of time
required to discharge a capacitor. The higher the resistance, the longer
Pot takes. The math operators also take varying amounts of time
depending on the values supplied to them.

The result is that even the most carefully constructed long-term timing
programs end up being less accurate than a cheap clock.

An obvious cure for this might be to interface a real-time clock to the
Stamp. Available units have all kinds of neat features, including calen-
dars with leap-year compensation, alarms, etc. The trouble here is that
once you write a program to handle their synchronous serial interfaces,
acquire the time from the user, set the clock, read the time and convert

Figure 1. Schematic to accompany TIC_TOC.BAS

10M

32,768 Hz
XTAL

4060
counter/
oscillator

11

10

220k128

33pF

33pF

16

+5

3Stamp pin 0
2 Hz

Fast/Slow
adjust

4060
counter/
oscillator

Page 168 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 20: An Accurate Timebase

it to a usable form, you have pretty much filled the Stamp’s EEPROM.
A compromise approach is to provide the Stamp with a very accurate
source of timing pulses, and let your program decide how to use them.
The circuit and example program presented here do just that. For this
demonstration, the Stamp counts the passing seconds and displays
them using debug.

How it works. The circuit in figure 1 shows how to construct a crystal-
controlled, 2-pulse-per-second timebase from a common digital part,
the CD4060B. This part costs less than $1 from mail-order companies
like the one listed at the end of this note. The 32,768-Hz crystal is also
inexpensive, at just over 50 cents.

The 4060 is a 14-stage binary counter with an onboard oscillator.
Although the oscillator can be used with a resistor/capacitor timing
circuit, we’re going for accuracy; hence the crystal. Why 32,768 Hz and
not some other value, like 1 MHz? It just happens that 32,768 = 215, so it’s
easy to use a binary counter like the 4060 to divide it down to easy
fractions of one second. Since the 4060 is a 14-stage counter, the best it
can do is divide by 214. The program further divides the resulting twice-
a-second pulses to produce one count per second.

Take a look at the program listing. It consists of a main loop and a
routine to increment the clock. In an actual application, the main loop
would contain most of the program instructions. For accurate timing,
the instructions within the main loop must take less than 250 millisec-
onds total. Even with the timing problems we’ve discussed, that’s
pretty easy to do.

Let’s walk through the program’s logic. In the main loop, the program
compares the state of pin0 to bit0. If they’re equal (both 0 or both 1) it
jumps to the tick routine.

In tick, the program toggles bit0 by adding 1 to the byte it belongs to, b0.
This makes sure that bit0 is no longer equal to the state of pin0, so the
program won’t return to tick until pin0 changes again.

B0 also serves as a counter. If it is less than 4, the program returns to the
main loop. When b0 reaches 4, tick clears it, adds 1 to the running total

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 169

BASIC Stamp I Application Notes

1

20: An Accurate Timebase

of seconds, displays the number of seconds on the screen, and jumps
back to the main loop.

This is pretty elementary programming, but there’s one detail that may
be bothering you: If we’re using a 2-Hz timebase, why count to 4 before
incrementing the seconds? The reason is that we’re counting transi-
tions—changes in the state of
pin0—not cycles. Figure 2
shows the difference.

This stems from our use of bit0
to track changes in the timing
pulses. As soon as pin0 = bit0,
we drop into tick and toggle the state of bit0. This keeps us from visiting
tick more than once during the same pulse. The next time pin0 changes—
the next transition—pin0 = bit0, and tick executes again. A side effect of
this approach is that we increment the counter twice per cycle.

Construction notes. The circuit in figure 1 draws only about 0.5 mA,
so you can power it from the Stamp’s +5V supply without any problem.
The resistor and capacitor values shown are a starting point, but you
may have to adjust them somewhat for most reliable oscillator startup
and best frequency stability. You may substitute a fixed capacitor for
the adjustable one shown, but you’ll have to determine the best value
for accurate timing. The prototype was right on the money with a 19-pF
capacitor, but your mileage may vary due to stray capacitance and parts
tolerances.

Parts source. The CD4060B and crystal are available from Digi-Key
(800-344-4539) as part numbers CD4060BE-ND and SE3201,
respectively.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

Transitions: T T T T

C CCycles:

Figure 2.

Page 170 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Program: TIC_TOC.BAS (Increment a counter in response to a
' precision 2-Hz external clock.)

' The 2-Hz input is connected to pin0. Bit0 is the lowest bit of b0,
' so each time b0 is incremented (in tick), bit0 gets toggled. This
' ensures that tick gets executed only once per transition of pin0.

Main:
if pin0 = bit0 then tick
 ' Other program activities--
 ' up to 250 ms worth--
 ' go here.
goto Main

' Tick maintains a 16-bit counter to accumulate the number of seconds.
' The maximum time interval w1 can hold is 65535 seconds--a bit over
' 18 hours. If you want a minute count instead, change the second
' line of tick to read: "if b0 < 240 then Main". There are 1440 minutes
' in a day, so w1 can hold up to 65535/1440 = 45.5 days worth of to-the-
' minute timing information.

tick:
let b0 = b0 + 1 ' Increment b0 counter.
if b0 < 4 then Main ' If b0 hasn't reached 4, back to Main.
let b0 = 0 ' Else clear b0,
let w1 = w1 + 1 ' increment the seconds count,
debug cls,#w1," sec." ' and display the seconds.
goto Main ' Do it again.

20: An Accurate Timebase

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 171

BASIC Stamp I Application Notes

1

21: Fun with Trains

Introduction. This application note describes a simple model train
project that we showed at the Embedded Systems Conference in 1994.
The project uses a Stamp to control the speeds of three N-scale trains.
The speeds are displayed on an LCD display, and can be changed using
three buttons: track select, up, and down.

Background. Several months before the Conference, we decided that
we should have an interesting example of the Stamp’s capabilities. We
determined that it should be something physical, something simple,
and something that people would relate to. We looked at various toys,
including Legos, Erector Sets, electric race cars, and model trains. They
all had their good and bad points, but we finally decided upon model
trains. I always liked model trains as a child, and I was the one who had
to build it, anyway.

Trains are somewhat simple to control and detect, and many people like
them (more than we expected). The only drawback was the amazingly
high cost of constructing a complete train set. A complete train set, with
three loops of track, three trains, several buildings, and lots of trees, cost
about $700! (the trains my parents bought were much less expensive).
It didn’t seem like that much, because I purchased the track one day,
and the engines a week later, and the buildings a week later, etc. But the
bookkeeper was keeping track, and indeed the simple train display was
getting expensive. But, alas, it was too late to go back.

Having decided upon a train set, I had the harder task of deciding what

The completed Stamp-
controlled train set
(buildings and trees
were added later).

Page 172 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

to do with it. I had some really neat ideas, like having a Stamp in each
engine, thus making each train intelligent. With a brain in each train, I
would then have infrared “markers” along the track, so the trains
would know their position and act accordingly. In fact, perhaps they
could even communicate with a master Stamp, which could then
modify their path and communicate with other trains. The possibilities
were endless, especially since I hadn’t run into reality, yet.

After some humbling thought, I tapered my ideas to a simple two-part
goal: to control the speed of three trains, and to detect the position of the
trains. I didn’t know exactly how to accomplish these goals, but they
seemed possible. I knew that high-current drivers existed, and could be
used to run the trains. As for detecting the trains, my thoughts ranged
from LED/detector pairs to Hall-effect sensors. The Hall-effect sensors
seemed better, since they could be hidden (LEDs would be too obvious).

Preliminary research. Not knowing much about high-current drivers,
I called Scott Edwards. He knows something about everything, and he
was happy to fax a pinout of the Motorola ULN2803. The Motorola chip
is an 18-pin device described as an “octal high-voltage, high-current
Darlington transistor array.” Other people refer to it as a “low-side
driver,” since it’s used to drive the low (GND) side of a load. Each
driver can sink 500 mA, and as you might guess from the word “octal”
in the name, the ULN2803 has eight separate drivers, so you can really
drive a lot of current with one chip. The chip even has internal clamping
diodes to suppress transients that occur when “noisy” devices turn on
and off (“noisy” devices include motors, relays, solenoids, etc.). With-
out diodes to suppress transients, the digital control circuitry (in this
case, the Stamp) may go crazy (I think this is caused by fluctuations on
the I/O pins and/or power pins). In any case, the ULN2803 makes a
previously messy task very clean, simple, and inexpensive (the chips
are under $1).

As for Hall-effect sensors, I ordered a selection from Digi-Key and then
went to Radio Shack to buy some magnets. If you’re not familiar with
them, Hall-effect sensors are 3-pin, transistor-sized devices that sense
magnetic fields. They sense the presence of a north or south magnetic
field, depending on the individual sensor’s design. Some even act as a
mechanical switch: they trigger when a magnetic field is present, and

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 173

BASIC Stamp I Application Notes

1

21: Fun with Trains

then remain activated until power is removed. Others remain active
until they sense another magnetic field of the same or opposite polarity.
And all of the ones I found had TTL-level outputs, which was perfect for
the Stamp. All in all, if you need to sense a magnetic field, there’s
probably one for you.

For me, the only question was: will the train’s engine generate a strong
enough field to trigger the sensor? After all, I wanted to place the sensor
under the track, or even under the wooden board on which the train set
was built. This would place the sensor 0.25 to 0.75 inches from the
underside of the train. Unfortunately, the train didn’t produce an
adequate field at any distance, no matter how small. So, I purchased a
selection of “super strong” magnets at a nearby electronics store. These
small magnets were strong enough to keep themselves secured to my
hand by placing one in my palm and the other on the back of my hand
(fairly impressive, since my hand is at least an inch thick). And they
were strong enough to activate the most sensitive Hall-effect sensor
through the track and the wooden board! This was great, because placing
the sensors on the “back” of the train set would be much easier than
drilling holes in the board.

Starting construction. Having done a little preliminary research, it
was time to start making something. It seemed logical to construct the
basic track layout first, and then start integrating the Stamp. So, I
constructed a simple layout of three oval tracks. The distance separat-
ing each track from the next was about half an inch. I thought this
closeness would look attractive when all three trains were running at
the same time; I even reversed the polarity of the middle track, just to
make the display look especially interesting (all trains going the same
direction might get boring).

With the physical layout complete, I turned to speed control. I remem-
bered that the ULN2803 was used on our Stamp Experiment Board, so
I used the experiment board for initial testing. Using a handful of
micrograbber cables, I quickly connected the on-board Stamp circuit to
the ULN2803 and then to the first loop of track. And, of course, nothing
worked. I examined the circuit for several hours, and discovered two or
three stupid mistakes. The mistakes were truly stupid (like missing
ground connections), but one of them reminded me of why the ULN2803

Page 174 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

is called a low-side driver: the driver provides a switchable ground, so
my circuit must therefore provide a constant “supply” voltage to one
side of the tracks (in this case, 12 VDC). With the minor bugs corrected,
it worked, or at least somewhat. I hadn’t written much code, so the
necessary PWM routines weren’t in place to vary the train’s speed.
However, I could toggle a Stamp I/O pin, which drove the ULN2803,
which powered the train. A miracle was upon us (at least for me): the
BASIC Stamp could make the train start and stop.

A foundation was forming, but there were still basic human-interface
questions (how many buttons would control the system?, would there
be an LCD display?, etc.). I decided upon the following design:

• Three buttons (track select, up, down)
• LCD display for track speeds

I ordered a selection of push-buttons from Digi-Key and called Scott
about his new serial LCD module (it was new at the time). He had
designed a 1x16 character LCD which was controlled with one line
(plus power and ground). The serial LCD was a godsend, because I was
running out of I/O lines on the Stamp. Controlling the track voltages
took three lines, and the buttons were going to take three more. This left
only two unused I/O lines, which would usually fall short of the six
lines required to drive a regular intelligent LCD. But, again, the serial
LCD saved the day. With the tracks, buttons, and LCD, I had one I/O
line left unused.

The buttons arrived the next day, and I chose the ones that seemed best
for the job (large button, small footprint). I soldered the ULN2803 and
three buttons onto a BASIC Stamp, and then connected the Stamp to the
train set.

Programming custom PWM. It was time to do some real BASIC
programming. Earlier, when Scott sent the ULN2803 data, he also
included some routines to make the Stamp perform “custom” pulse-
width-modulation (PWM). The Stamp has a built-in PWM command,
but it’s meant for purposes other than driving the ULN2803. To control
the speed of the trains, I would need to write a program that pulsed the
voltage to the tracks. Instead of varying the voltage to the tracks, which

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 175

BASIC Stamp I Application Notes

1

21: Fun with Trains

would require more complex hardware, the Stamp could simply pulse
the tracks with a set voltage. Pulse-width-modulation has that name
because you are varying, or modulating, the width of a pulse. If the pulse
is on half the time and off half the time, then you have a duty cycle of
0.5, which would theoretically make the train run at half speed (of
course, the engine’s performance is probably not linear). Using Scott’s
example as a guide, I wrote a subroutine that pulsed all three tracks
according to the speed set by the user. I still don’t fully understand real
PWM, but the basic theory of the train routine makes sense:

• A counter (or accumulator) is maintained for each track.

• The user sets a speed (0-99) for each track.

• For every pass through the PWM routine, the speed is added to
the accumulator. The high bit (bit 7) of the accumulator is then
copied to the I/O pin for the appropriate track. If the bit is a ‘1’,
then the train will receive power; if the bit is a ‘0’, then power
is removed.

• The Stamp executes the PWM routine many times per second,
so the train receives a number of ‘on’ and ‘off’ states. A higher
speed value causes the accumulator to overflow more often,
which results in more frequent ‘on’ states. If power to the tracks
is ‘on’ more often, then the trains move more quickly. If power
is ‘off’ more often, then the trains slow down.

Connecting push-buttons. With the PWM routine working relatively
well, it was time to move on to other concerns. The push-buttons and
LCD were waiting to be used. The buttons seemed like the obvious
thing to work on next.

The BASIC Stamp has a particularly handy instruction called BUTTON,
which is used to read push-buttons and perform otherwise tedious
functions, such as debounce and auto-repeat. Debounce is necessary to
convert one button press into one electrical pulse (many pulses actually
occur when the button’s contacts are closed); auto-repeat allows the
user to hold down the button and have the system act as if he were
repeatedly pressing the button (most computer keyboards do this). I

Page 176 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

had never used the BUTTON instruction before, but it was relatively
simple to experiment with and understand.

But, I noticed that the buttons seemed unstable; sometimes the Stamp
would act as if I were still pressing a button long after I had stopped.
Then I realized that I had forgotten pull-up resistors on the button
inputs. In my circuit, when a button was pressed, it connected the
associated I/O pin to ground, which read as ‘0’ to the BASIC program.
However, when the button was not pressed, the I/O pin would “float,”
since it wasn’t connected to anything. Since the pin was floating, it
would randomly read as ‘0’ or ‘1’. This was solved by adding pull-up
resistors to the button inputs; the resistors provide a weak connection
to the 5-volt supply, so the inputs read as ‘1’ when their buttons are not
pressed. The last step involving the buttons was to adjust the auto-
repeat rate until it seemed right (not too fast, not too slow). The repeat
rate is controlled by one of the values given in the BUTTON instruction,
so it just took a few quick downloads to arrive at the right value.

Connecting the LCD display. With the buttons working, the next item
was the LCD. I connected the LCD to the Stamp and then entered the
sample program provided with the LCD. After some minor trouble-
shooting, the LCD worked, and worked well! Printing text was almost
as easy as using the normal PRINT instruction found in other versions
of BASIC. But, since the Stamp has no PRINT instruction, the LCD is
controlled with simple SEROUT instructions. For instance, SEROUT
0,N2400,(“hello”) prints the word “hello” on an LCD module connected
to pin 0.

7

6

5

4

3

2

1

0

+5V

Vin

GND
© 1993

REV D

BASIC Stamp
TM

ULN2803A

SEL

+

–

Completed Stamp with ULN2803 and buttons

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 177

BASIC Stamp I Application Notes

1

21: Fun with Trains

I wanted the LCD to display something fancy, but reality came into play
for two reasons: 16 characters isn’t that much, especially if you want to
display three speeds, and I was quickly running out of program space
in the Stamp. So, I decided upon a simple display of the track speeds,
as shown below:

>00 00 00

The pairs of digits represent the speed of the trains, and the arrow
indicates which train is currently selected (pressing the up and down
buttons affects the speed of the currently selected train). This arrange-
ment was simple to operate, and made good use of available resources.

Streamlining the program. After a day or so, I had a program that was
nearly finished; it read the buttons, updated the LCD, and ran the trains.
But, as I finished the LCD routine, I noticed that the performance of the
trains was getting progressively worse. The trains had run smoothly
before, even at slow speeds, but now they were very jerky, even at
medium and fast speeds. The problem was that the LCD took a fairly
long time to update. Updating the LCD meant sending 22 bytes of data,
which took about 0.1 seconds. One-tenth of a second isn’t much to us,
but it’s an eternity to the Stamp, and was quite noticeable in the trains.
I spent the evening making the program more efficient, which resulted
in more acceptable operation. The two changes that really helped were:

• Updating the LCD only when something changed, which looks
better, anyway (less flicker).

• Calling the train PWM routine several times from within the
LCD routine.

I was finally nearing the end of the project. I did a few downloading
tests, and realized that I only had a few more bytes of program space in
the Stamp.

There was one more function I wanted: the trains derailed a few times
while running continuously, so I felt that a panic button would be a
good idea. The purpose of the button would be to stop the trains in the
event of an accident. Without the panic button, the operator would have

Page 178 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

to set each speed to zero, which would take some time (I imagined trains
strewn about the board). The panic button was easy: all I needed to add
was a single line in the beginning of the main loop, which would check
the panic button and jump to an earlier line that set the speeds to zero
(something that the program did upon start-up). This seemed straight-
forward, but it proved to be more difficult than I thought. The concept
was fine, but I was short a few bytes of program space.

A few more bytes. Squeezing a few more bytes out of my program was
painfully difficult. Finally, everything did fit, but only after resorting to
extreme measures. For instance, if you look at the first few lines of code,
you’ll see the following:

symbol track1_speed=b2
symbol track1_accum=b1

symbol track2_speed=b3
symbol track2_accum=b7

symbol track3_speed=b4
symbol track3_accum=b6

symbol current_track = b5
.
.
.
reset: w1 = 0: w2 = 0

You might wonder why I didn’t just use the variables b1-b7 in order,
which is how I originally had them. The order shown seems random,
but it actually saves program space later. The last line shown resets the
track speeds and current track variable. The word variable w1 includes
b2 and b3, and the word variable w2 includes b4 and b5. So, by clearing
two word variables, the program clears four byte variables, which saves
a byte or two of program space.

If you’re really wondering about variable allocation, you might also
wonder why the program doesn’t store anything in b0. This is because
b0 has a special role in the train PWM routine:

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 179

BASIC Stamp I Application Notes

1

21: Fun with Trains

.

.

.
b0 = track1_accum
pin3 = bit7

In this piece of code, b0 is loaded with the accumulator for track #1. You
may recall that the high bit (bit 7) of the accumulator is used to drive the
track. But, how do we isolate the high bit? The easiest way, at least on
the Stamp, is to copy the 8-bit accumulator value into b0, and then use
the unique bit-addressable quality of b0 to drive the track I/O pin. The
statement pin3 = bit7 means make pin 3 the same state as bit 7 of b0. The only
variable that’s bit-addressable is b0, so it should be saved for such cases.

Conclusion. In the end, the train project was fun and educational. It
wasn’t nearly as elaborate as I originally intended, but it was a good
example of what the BASIC Stamp could do. We now offer a larger
Stamp, which would have made the programming portion much
easier. But, it wouldn’t have been nearly as much fun.

The finished train
set schematic.

TRACK SELECT

DOWN

UP

RESET

10K

+5V

DATA

+5V

+12V

I/O 0

I/O 1

I/O 2

I/O 3

I/O 4

I/O 5

I/O 6

I/O 7

8

7

6

11

12

13

109

ULN2803

Page 180 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes 21: Fun with Trains

' Program: TRAIN.BAS
' Uses simple 4-button interface and LCD to control voltages to three N-scale trains.

symbol track1_speed=b2 'set up variable names
symbol track1_accum=b1

symbol track2_speed=b3
symbol track2_accum=b7

symbol track3_speed=b4
symbol track3_accum=b6

symbol current_track = b5

symbol track_btn = b8
symbol up_btn = b9
symbol down_btn = b10

pause 2000 'wait for lcd to wake up

serout 6,n2400,(254,1,254," ") 'clear lcd

dirs = %00111000 'make track driver pins
'outputs; all others are
'inputs

reset: w1 = 0: w2 = 0 'set track speeds and
'current track # to 0

goto update_lcd 'update lcd

main_loop:

if pin7 = 0 then reset 'reset everything if
'reset button is pressed

gosub run_trains 'update track pwm

track: button 0,0,30,6,track_btn,0,down0 'read track select button

current_track = current_track + 1 'increment current track #
if current_track <> 3 then go_lcd
current_track = 0 'reset if over 2

go_lcd: goto update_lcd 'update lcd

down0: button 1,0,30,1,down_btn,0,up0 'read down button

Program listing: As with the other appli-
cation notes, this program may be down-
loaded from our Internet ftp site at
ftp.parallaxinc.com. The ftp site may be
reached directly or through our web site
at http://www.parallaxinc.com.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 181

BASIC Stamp I Application Notes

1

21: Fun with Trains

if current_track <> 0 then down1 'check current track #
if track1_speed = 0 then up0
track1_speed = track1_speed - 1 'reduce track 1 speed
goto update_lcd 'update lcd

down1: if current_track <> 1 then down2 'check current track #
if track2_speed = 0 then up0
track2_speed = track2_speed - 1 'reduce track 2 speed
goto update_lcd 'update lcd

down2: if track3_speed = 0 then up0
track3_speed = track3_speed - 1 'reduce track 3 speed
goto update_lcd 'update lcd

up0: button 2,0,30,1,up_btn,0,main_loop 'read up button

if current_track <> 0 then up1 'check current track #
if track1_speed = 99 then main_loop
track1_speed = track1_speed + 1 'increase track 1 speed
goto update_lcd 'update lcd

up1: if current_track <> 1 then up2 'check current track #
if track2_speed = 99 then main_loop
track2_speed = track2_speed + 1 'increase track 2 speed
goto update_lcd 'update lcd

up2: if track3_speed = 99 then main_loop
track3_speed = track3_speed + 1 'increase track 3 speed

update_lcd:

serout 6,n2400,(254,130,254," ") 'move cursor and print " "
if track1_speed > 9 then abc 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc: serout 6,n2400,(#track1_speed) 'print track 1 speed

gosub run_trains 'update track pwm

serout 6,n2400,(254,134,254," ") 'move cursor and print " "
if track2_speed > 9 then abc2 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc2: serout 6,n2400,(#track2_speed) 'print track 2 speed

gosub run_trains 'update track pwm

serout 6,n2400,(254,138,254," ") 'move cursor and print " "
if track3_speed > 9 then abc3 'test for 1 or 2 digits
serout 6,n2400,("0") 'print leading zero

abc3: serout 6,n2400,(#track3_speed) 'print track 3 speed

Page 182 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

gosub run_trains 'update track pwm

done: b0 = current_track * 4 + 130 'print arrow pointing to
serout 6,n2400,(254,b0,254,">") 'currently selected track

goto main_loop

run_trains:

'update track 1 pwm
track1_accum = track1_accum + track1_speed
b0 = track1_accum
pin3 = bit7 'drive track 1
track1_accum = track1_accum & %01111111

'update track 2 pwm
track2_accum = track2_accum + track2_speed
b0 = track2_accum
pin4 = bit7 'drive track 2
track2_accum = track2_accum & %01111111

'update track 3 pwm
track3_accum = track3_accum + track3_speed
b0 = track3_accum
pin5 = bit7 'drive track 3
track3_accum = track3_accum & %01111111

return

21: Fun with Trains

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 183

BASIC Stamp I Application Notes

1

22: Interfacing a 12-bit ADC

Introduction. This application note shows how to interface the LTC1298
analog-to-digital converter (ADC) to the BASIC Stamp.

Background. Many popular applications for the Stamp include analog
measurement, either using the Pot command or an external ADC. These
measurements are limited to eight-bit resolution, meaning that a 5-volt
full-scale measurement would be broken into units of
5/256 = 19.5 millivolts (mV).

That sounds pretty good until you apply it to a real-world sensor. Take
the LM34 and LM35 temperature sensors as an example. They output
a voltage proportional to the ambient temperature in degrees Fahren-
heit (LM34) or Centigrade (LM35). A 1-degree change in temperature
causes a 10-mV change in the sensor’s output voltage. So an eight-bit
conversion gives lousy 2-degree resolution. By reducing the ADC’s
range, or amplifying the sensor signal, you can improve resolution, but
at the expense of additional components and a less-general design.

The easy way out is to switch to an ADC with 10- or 12-bit resolution.
Until recently, that hasn’t been a decision to make lightly, since more
bits = more bucks. However, the new LTC1298 12-bit ADC is reason-
ably priced at less than $10, and gives your Stamp projects two channels

Schematic to accompany LTC1298.BAS

1k

+5

10µF
tantalum

+

5k
pot

5k
pot

+5

pin 0 pin 2 pin 1

Connections to BASIC Stamp I/O pins

Variable Voltage
Source for Demo

0–5V in

CS

CH0

CH1

GND

Vcc

CLK

Dout

Din

LTC1298

1

Page 184 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

of 1.22-mV resolution data. It’s packaged in a Stamp-friendly 8-pin DIP,
and draws about 250 microamps (µA) of current.

How it works. The figure shows how to connect the LTC1298 to the
Stamp, and the listing supplies the necessary driver code. If you
have used other synchronous serial devices with the Stamp, such as
EEPROMs or other ADCs described in previous application notes,
there are no surprises here. We have tied the LTC1298’s data input and
output together to take advantage of the Stamp’s ability to switch data
directions on the fly. The resistor limits the current flowing between the
Stamp I/O pin and the 1298’s data output in case a programming error
or other fault causes a “bus conflict.” This happens when both pins are
in output mode and in opposite states (1 vs. 0). Without the resistor,
such a conflict would cause large currents to flow between pins,
possibly damaging the Stamp and/or ADC.

If you have used other ADCs, you may have noticed that the LTC1298
has no voltage-reference (Vref) pin. The voltage reference is what an
ADC compares its analog input voltage to. When the analog voltage is
equal to the reference voltage, the ADC outputs its maximum measure-
ment value; 4095 in this case. Smaller input voltages result in propor-
tionally smaller output values. For example, an input of 1/10th the
reference voltage would produce an output value of 409.

The LTC1298’s voltage reference is internally connected to the power
supply, Vcc, at pin 8. This means that a full-scale reading of 4095 will
occur when the input voltage is equal to the power-supply voltage,
nominally 5 volts. Notice the weasel word “nominally,” meaning “in
name only.” The actual voltage at the +5-volt rail of the full-size (pre-
BS1-IC) Stamp with the LM2936 regulator can be 4.9 to 5.1 volts initially,
and can vary by 30 mV.

In some applications you’ll need a calibration step to compensate for the
supply voltage. Suppose the LTC1298 is looking at 2.00 volts. If the
supply is 4.90 volts, the LTC1298 will measure (2.00/4.90) * 4095 = 1671.
If the supply is at the other extreme, 5.10 volts, the LTC1298 will
measure (2.00/5.10) * 4095 = 1606.

How about that 30-mV deviation in regulator performance, which

22: Interfacing a 12-bit ADC

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 185

BASIC Stamp I Application Notes

1

cannot be calibrated away? If calibration makes it seem as though the
LTC1298 is getting a 5.000-volt reference, a 30-mV variation means that
the reference would vary 15 mV high or low. Using the 2.00-volt
example, the LTC1298 measurements can range from (2.00/4.985) *
4095 = 1643 to (2.00/5.015) * 4095 = 1633.

The bottom line is that the measurements you make with the LTC1298
will be only as good as the stability of your +5-volt supply.

The reason the manufacturer left off a separate voltage-reference pin
was to make room for the chip’s second analog input. The LTC1298 can
treat its two inputs as either separate ADC channels, or as a single,
differential channel. A differential ADC is one that measures the
voltage difference between its inputs, rather than the voltage between
one input and ground.

A final feature of the LTC1298 is its sample-and-hold capability. At the
instant your program requests data, the ADC grabs and stores the input
voltage level in an internal capacitor. It measures this stored voltage,
not the actual input voltage.

By measuring a snapshot of the input voltage, the LTC1298 avoids the
errors that can occur when an ADC tries to measure a changing voltage.
Without going into the gory details, most common ADCs are successive
approximation types. That means that they zero in on a voltage measure-
ment by comparing a guess to the actual voltage, then determining
whether the actual is higher or lower. They formulate a new guess and
try again. This becomes very difficult if the voltage is constantly
changing! ADCs that aren’t equipped with sample-and-hold circuitry
should not be used to measure noisy or fast-changing voltages. The
LTC1298 has no such restriction.

Parts source. The LTC1298 is available from Digi-Key (800-344-4539)
for $8.89 in single quantities (LTC1298CN8-ND). Be sure to request a
data sheet or the data book (9210B-ND, $9.95) when you order.

Program listing. This program may be downloaded from our Internet
ftp site at ftp.parallaxinc.com. The ftp site may be reached directly or
through our web site at http://www.parallaxinc.com.

22: Interfacing a 12-bit ADC

Page 186 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

' Program: LTC1298.BAS (LTC1298 analog-to-digital converter)
' The LTC1298 is a 12-bit, two-channel ADC. Its high resolution, low
' supply current, low cost, and built-in sample/hold feature make it a
' great companion for the Stamp in sensor and data-logging applications.
' With its 12-bit resolution, the LTC1298 can measure tiny changes in
' input voltage; 1.22 millivolts (5-volt reference/4096).

' ==
' ADC Interface Pins
' ==

' The 1298 uses a four-pin interface, consisting of chip-select, clock,
' data input, and data output. In this application, we tie the data lines
' together with a 1k resistor and connect the Stamp pin designated DIO
' to the data-in side of the resistor. The resistor limits the current
' flowing between DIO and the 1298’s data out in case a programming error
' or other fault causes a “bus conflict.” This happens when both pins are
' in output mode and in opposite states (1 vs 0). Without the resistor,
' such a conflict would cause large currents to flow between pins,
' possibly damaging the Stamp and/or ADC.

SYMBOL CS = 0 ' Chip select; 0 = active.
SYMBOL CLK = 1 ' Clock to ADC; out on rising, in on falling edge.
SYMBOL DIO_n = 2 ' Pin _number_ of data input/output.
SYMBOL DIO_p = pin2 ' Variable_name_ of data input/output.
SYMBOL ADbits = b1 ' Counter variable for serial bit reception.
SYMBOL AD = w1 ' 12-bit ADC conversion result.

' ==
' ADC Setup Bits
' ==

' The 1298 has two modes. As a single-ended ADC, it measures the
' voltage at one of its inputs with respect to ground. As a differential
' ADC, it measures the difference in voltage between the two inputs.
' The sglDif bit determines the mode; 1 = single-ended, 0 = differential.
' When the 1298 is single-ended, the oddSign bit selects the active input
' channel; 0 = channel 0 (pin 2), 1 = channel 1 (pin 3).
' When the 1298 is differential, the oddSign bit selects the polarity
' between the two inputs; 0 = channel 0 is +, 1 = channel 1 is +.
' The msbf bit determines whether clock cycles _after_ the 12 data bits
' have been sent will send 0s (msbf = 1) or a least-significant-bit-first
' copy of the data (msbf = 0). This program doesn’t continue clocking after
' the data has been obtained, so this bit doesn’t matter.

' You probably won’t need to change the basic mode (single/differential)
' or the format of the post-data bits while the program is running, so
' these are assigned as constants. You probably will want to be able to
' change channels, so oddSign (the channel selector) is a bit variable.

22: Interfacing a 12-bit ADC

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 187

BASIC Stamp I Application Notes

1

SYMBOL sglDif = 1 ' Single-ended, two-channel mode.
SYMBOL msbf = 1 ' Output 0s after data transfer is complete.
SYMBOL oddSign = bit0 ' Program writes channel # to this bit.

' ==
' Demo Program
' ==

' This program demonstrates the LTC1298 by alternately sampling the two
' input channels and presenting the results on the PC screen using Debug.

high CS ' Deactivate the ADC to begin.
Again: ' Main loop.
 For oddSign = 0 to 1 ' Toggle between input channels.
 gosub Convert ' Get data from ADC.
 debug "ch ",#oddSign,":",#AD,cr ' Show the data on PC screen.
 pause 500 ' Wait a half second.
 next ' Change input channels.
goto Again ' Endless loop.

' ==
' ADC Subroutine
' ==

' Here’s where the conversion occurs. The Stamp first sends the setup
' bits to the 1298, then clocks in one null bit (a dummy bit that always
' reads 0) followed by the conversion data.

Convert:
 low CLK ' Low clock—output on rising edge.
 high DIO_n ' Switch DIO to output high (start bit).
 low CS ' Activate the 1298.
 pulsout CLK,5 ' Send start bit.
 let DIO_p = sglDif ' First setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = oddSign ' Second setup bit.
 pulsout CLK,5 ' Send bit.
 let DIO_p = msbf ' Final setup bit.
 pulsout CLK,5 ' Send bit.
 input DIO_n ' Get ready for input from DIO.
 let AD = 0 ' Clear old ADC result.
 for ADbits = 1 to 13 ' Get null bit + 12 data bits.
 let AD = AD*2+DIO_p ' Shift AD left, add new data bit.
 pulsout CLK,5 ' Clock next data bit in.
 next ' Get next data bit.
 high CS ' Turn off the ADC
return ' Return to program.

22: Interfacing a 12-bit ADC

Page 188 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 189

BASIC Stamp I Application Notes

1

23: DS1620 Digital Thermometer

Introduction. This application note shows how to interface the DS1620
Digital Thermometer to the BASIC Stamp.

Background. In application note #7, we demonstrated a method for
converting the non-linear resistance of a thermistor to temperature
readings. Although satisfyingly cheap and crafty, the application re-
quires careful calibration and industrial-strength math.

Now we’re going to present the opposite approach: throw money ($7)
at the problem and get precise, no-calibration temperature data.

How it works. The Dallas Semiconductor DS1620 digital thermometer/
thermostat chip, shown in the figure, measures temperature in units of
0.5 degrees Centigrade from –55° to +125° C. It is calibrated at the
factory for exceptional accuracy: +0.5° C from 0 to +70° C.

(In the familiar Fahrenheit scale, those °C temperatures are: range, –67°
to +257° F; resolution, 0.9° F; accuracy, +0.9° F from 32° to 158° F.)

The chip outputs temperature data as a 9-bit number conveyed over a
three-wire serial interface. The DS1620 can be set to operate continu-
ously, taking one temperature measurement per second, or intermit-

+5

0.1µF

1k

pin 2

pin 1

pin 0

Stamp Pins

DQ

CLK

RST

GND

VDD

T(hi)

T(lo)

T(com)

DS1620

1

DQ—Data input/output
CLK—Clock for shifting data in/out (active-low conversion start in thermostat/
1-shot mode)
RST—Reset; high activates chip, low disables it
GND—Ground connection
VDD—Supply voltage; +4.5 to 5.5 Vdc
T(hi)—In thermostat mode, outputs a 1 when temp is above high setpoint
T(lo)—In thermostat mode, outputs a 1 when temp is below low setpoint
T(com) —In thermostat mode, outputs a 1 when temp exceeds high setpoint
and remains high until temp drops below low setpoint

Schematic to accompany DS1620.BAS

Page 190 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

tently, conserving power by measuring only when told to.

The DS1620 can also operate as a standalone thermostat. A temporary
connection to a Stamp establishes the mode of operation and high/low-
temperature setpoints. Thereafter, the chip independently controls
three outputs: T(high), which goes active at temperatures above the
high-temperature setpoint; T(low), active at temperatures below the
low setpoint; and T(com), which goes active at temperatures above the
high setpoint, and stays active until the temperature drops below the
low setpoint.

We’ll concentrate on applications using the DS1620 as a Stamp periph-
eral, as shown in the listing.

Using the DS1620 requires sending a command (what Dallas Semi calls
a protocol) to the chip, then listening for a response (if applicable). The
code under “DS1620 I/O Subroutines” in the listing shows how this is
done. In a typical temperature-measurement application, the program
will set the DS1620 to thermometer mode, configure it for continuous
conversions, and tell it to start. Thereafter, all the program must do is
request a temperature reading, then shift it in, as shown in the listing’s
Again loop.

The DS1620 delivers temperature data in a nine-bit, two’s complement
format, shown in the table. Each unit represents 0.5° C, so a reading of
50 translates to +25° C. Negative values are expressed as two’s comple-
ment numbers. In two’s complement, values with a 1 in their leftmost
bit position are negative. The leftmost bit is often called the sign bit,
since a 1 means – and a 0 means +.

To convert a negative two’s complement value to a positive number,
you must invert it and add 1. If you want to display this value,
remember to put a minus sign in front of it.

Rather than mess with two’s complement negative numbers, the pro-
gram converts DS1620 data to an absolute scale called DSabs, with a
range of 0 to 360 units of 0.5° C each. The Stamp can perform calcula-
tions in this all-positive system, then readily convert the results for
display in °C or °F, as shown in the listing.

23: DS1620 Digital Thermometer

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 191

BASIC Stamp I Application Notes

1

23: DS1620 Digital Thermometer

Once you have configured the DS1620, you don’t have to reconfigure it
unless you want to change a setting. The DS1620 stores its configuration
in EEPROM (electrically erasable, programmable read-only memory),
which retains data even with the power off. In memory-tight Stamp
applications, you might want to run the full program once for configu-
ration, then strip out the configuration stuff to make more room for
your final application.

If you want to use the DS1620 in its role as a standalone thermostat, the
Stamp can help here, too. The listing includes protocols for putting the
DS1620 into thermostat (NoCPU) mode, and for reading and writing the
temperature setpoints. You could write a Stamp program to accept
temperature data serially, convert it to nine-bit, two’s complement
format, then write it to the DS1620 configuration register.

Be aware of the DS1620’s drive limitations in thermostat mode; it
sources just 1 mA and sinks 4 mA. This isn’t nearly enough to drive a
relay—it’s just enough to light an LED. You’ll want to buffer this output
with a Darlington transistor or MOSFET switch in serious applications.

Parts sources. The DS1620 is available from Jameco (800-831-4242) for
$6.95 in single quantity as part number 114382 (8-pin DIP). Be sure to

Nine-Bit Format for DS1620 Temperature Data

Temperature DS1620 Data
°F °C Binary Hex Decimal

+257 +125 0 11111010 00FA 250
+77 +25 0 00110010 0032 50
+32.9 +0.5 0 00000001 0001 1
+32 0 0 00000000 0000 0
+31.1 -0.5 1 11111111 01FF 511
-13 -25 1 11001110 01CE 462
-67 -55 1 10010010 0192 402

Example conversion of a negative temperature:
-25°C = 1 11001110 in binary. The 1 in the leftmost bit indicates that this is a
negative number. Invert the lower eight bits and add 1: 11001110 -> 00110001
+1 = 00110010 = 50. Units are 0.5°C, so divide by 2. Converted result is -25°C.

Page 192 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

request a data sheet when you order. Dallas Semiconductor offers data
and samples of the DS1620 at reasonable cost. Call them at 214-450-
0448.

Program listing. The program DS1620.BAS is available from the Paral-
lax bulletin board system. You can reach the BBS at (916) 624-7101. You
may also obtain this and other Stamp programs via Internet:
ftp.parallaxinc.com.

23: DS1620 Digital Thermometer

' Program: DS1620.BAS
' This program interfaces the DS1620 Digital Thermometer to the
' BASIC Stamp. Input and output subroutines can be combined to
' set the '1620 for thermometer or thermostat operation, read
' or write nonvolatile temperature setpoints and configuration
' data.

' ===================== Define Pins and Variables ================
SYMBOL DQp = pin2 ' Data I/O pin.
SYMBOL DQn = 2 ' Data I/O pin _number_.
SYMBOL CLKn = 1 ' Clock pin number.
SYMBOL RSTn = 0 ' Reset pin number.
SYMBOL DSout = w0 ' Use bit-addressable byte for DS1620 output.
SYMBOL DSin = w0 ' " " " word " " input.
SYMBOL clocks = b2 ' Counter for clock pulses.

' ===================== Define DS1620 Constants ===================
' >>> Constants for configuring the DS1620
SYMBOL Rconfig = $AC ' Protocol for 'Read Configuration.’
SYMBOL Wconfig = $0C ' Protocol for 'Write Configuration.’
SYMBOL CPU = %10 ' Config bit: serial thermometer mode.
SYMBOL NoCPU = %00 ' Config bit: standalone thermostat mode.
SYMBOL OneShot = %01 ' Config bit: one conversion per start request.
SYMBOL Cont = %00 ' Config bit: continuous conversions after start.
' >>> Constants for serial thermometer applications.
SYMBOL StartC = $EE ' Protocol for 'Start Conversion.’
SYMBOL StopC = $22 ' Protocol for 'Stop Conversion.’
SYMBOL Rtemp = $AA ' Protocol for 'Read Temperature.’
' >>> Constants for programming thermostat functions.
SYMBOL RhiT = $A1 ' Protocol for 'Read High-Temperature Setting.’
SYMBOL WhiT = $01 ' Protocol for 'Write High-Temperature Setting.’
SYMBOL RloT = $A2 ' Protocol for 'Read Low-Temperature Setting.’
SYMBOL WloT = $02 ' Protocol for 'Write Low-Temperature Setting.’

' ===================== Begin Program ============================
' Start by setting initial conditions of I/O lines.
low RSTn ' Deactivate the DS1620 for now.

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 193

BASIC Stamp I Application Notes

1

high CLKn ' Initially high as shown in DS specs.
pause 100 ' Wait a bit for things to settle down.

' Now configure the DS1620 for thermometer operation. The
' configuration register is nonvolatile EEPROM. You only need to
' configure the DS1620 once. It will retain those configuration
' settings until you change them—even with power removed. To
' conserve Stamp program memory, you can preconfigure the DS1620,
' then remove the configuration code from your final program.
' (You’ll still need to issue a start-conversion command, though.)
let DSout=Wconfig ' Put write-config command into output byte.
gosub Shout ' And send it to the DS1620.
let DSout=CPU+Cont ' Configure as thermometer, continuous conversion.
gosub Shout ' Send to DS1620.
low RSTn ' Deactivate '1620.
Pause 50 ' Wait 50ms for EEPROM programming cycle.
let DSout=StartC ' Now, start the conversions by
gosub Shout ' sending the start protocol to DS1620.
low RSTn ' Deactivate '1620.

' The loop below continuously reads the latest temperature data from
' the DS1620. The '1620 performs one temperature conversion per second.
' If you read it more frequently than that, you’ll get the result
' of the most recent conversion. The '1620 data is a 9-bit number
' in units of 0.5 deg. C. See the ConverTemp subroutine below.
Again:
 pause 1000 ' Wait 1 second for conversion to finish.
 let DSout=Rtemp ' Send the read-temperature opcode.
 gosub Shout
 gosub Shin ' Get the data.
 low RSTn ' Deactivate the DS1620.
 gosub ConverTemp ' Convert the temperature reading to absolute.
 gosub DisplayF ' Display in degrees F.
 gosub DisplayC ' Display in degrees C.
goto Again

' ===================== DS1620 I/O Subroutines ==================
' Subroutine: Shout
' Shift bits out to the DS1620. Sends the lower 8 bits stored in
' DSout (w0). Note that Shout activates the DS1620, since all trans-
' actions begin with the Stamp sending a protocol (command). It does
' not deactivate the DS1620, though, since many transactions either
' send additional data, or receive data after the initial protocol.
' Note that Shout destroys the contents of DSout in the process of
' shifting it. If you need to save this value, copy it to another
' register.
Shout:
high RSTn ' Activate DS1620.
output DQn ' Set to output to send data to DS1620.

23: DS1620 Digital Thermometer

Page 194 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

for clocks = 1 to 8 ' Send 8 data bits.
 low CLKn ' Data is valid on rising edge of clock.
 let DQp = bit0 ' Set up the data bit.
 high CLKn ' Raise clock.
 let DSout=DSout/2 ' Shift next data bit into position.
next ' If less than 8 bits sent, loop.
return ' Else return.

' Subroutine: Shin
' Shift bits in from the DS1620. Reads 9 bits into the lsbs of DSin
' (w0). Shin is written to get 9 bits because the DS1620’s temperature
' readings are 9 bits long. If you use Shin to read the configuration
' register, just ignore the 9th bit. Note that DSin overlaps with DSout.
' If you need to save the value shifted in, copy it to another register
' before the next Shout.
Shin:
input DQn ' Get ready for input from DQ.
for clocks = 1 to 9 ' Receive 9 data bits.
 let DSin = DSin/2 ' Shift input right.
 low CLKn ' DQ is valid after falling edge of clock.
 let bit8 = DQp ' Get the data bit.
 high CLKn ' Raise the clock.
next ' If less than 9 bits received, loop.
return ' Else return.

' ================= Data Conversion/Display Subroutines ===============
' Subroutine: ConverTemp
' The DS1620 has a range of -55 to +125 degrees C in increments of 1/2
' degree. It’s awkward to work with negative numbers in the Stamp’s
' positive-integer math, so I’ve made up a temperature scale called
' DSabs (DS1620 absolute scale) that ranges from 0 (-55 C) to 360 (+125 C).
' Internally, your program can do its math in DSabs, then convert to
' degrees F or C for display.
ConverTemp:
if bit8 = 0 then skip ' If temp > 0 skip "sign extension" procedure.
 let w0 = w0 | $FE00 ' Make bits 9 through 15 all 1s to make a

' 16-bit two’s complement number.
skip:
 let w0 = w0 + 110 ' Add 110 to reading and return.
return

' Subroutine: DisplayF
' Convert the temperature in DSabs to degrees F and display on the
' PC screen using debug.
DisplayF:
let w1 = w0*9/10 ' Convert to degrees F relative to -67.
if w1 < 67 then subzF ' Handle negative numbers.
 let w1 = w1-67
 Debug #w1, " F",cr

23: DS1620 Digital Thermometer

Parallax, Inc. • BASIC Stamp Programming Manual 1.8 • Page 195

BASIC Stamp I Application Notes

1

return
subzF:
 let w1 = 67-w1 ' Calculate degrees below 0.
 Debug "-",#w1," F",cr ' Display with minus sign.
return

' Subroutine: DisplayC
' Convert the temperature in DSabs to degrees C and display on the
' PC screen using debug.
DisplayC:
let w1 = w0/2 ' Convert to degrees C relative to -55.
if w1 < 55 then subzC ' Handle negative numbers.
 let w1 = w1-55
 Debug #w1, " C",cr
return
subzC:
 let w1 = 55-w1 ' Calculate degrees below 0.
 Debug "-",#w1," C",cr ' Display with minus sign.
return

23: DS1620 Digital Thermometer

Page 196 • BASIC Stamp Programming Manual 1.8 • Parallax, Inc.

BASIC Stamp I Application Notes

