

Automatic Temperature Control System

San Jose State University

Department of Mechanical and Aerospace Engineering

ME106 – Fundamentals of Mechatronics

Professor: Burford Furman, Ph.D

Submitted

By

Garry Jackson and Jason Jocson

May 16, 2006

 1

Table of Contents

Table of Contents..2

Summary ...3

Introduction...4

Schematics ..5

Circuit Diagram ..6

BlockDiagram...7

Description..8

Methodology...8

Problems Encountered ..10

Building tips:... 10

Conclusion ..11

References...13

Appendix...14

Software Program ... 14

 2

Summary
 In the spring 2006 Mechatronics class at San Jose State University, our group designed a

project that implemented what we learned over the course of the semester. It became our goal to

materialize a system that employed a microcontroller, sensors and actuators. In the photograph

below, the microcontroller device on the bottom is connected to a breadboard circuit that

controls the fan speed, depending on the status of the motion detector and temperature sensor.

 To implement this project, we segmented the project into terms of software and

hardware. First, we devised a schematic diagram that would control a fan to operate at 3

different speeds. The speed would be controlled by the microcontroller by sending out a +5V

 3

 4

signal through a network of transistors which would result at turning on a fan at a particular

speed.

 By the end of the project, our group had implemented many topics that we learned

throughout the semester. By using transistor theory, circuit analysis, and software

programming, we were able to implement a microcontroller based automatic temperature control

system.

Introduction
 The purpose of this project is to demonstrate how microcontrollers can be used and

applied in a real-world application. One practical use is to incorporate a microcontroller in a

temperature control system that can be used for automatically controlling a rooms’ temperature.

By using a system of sensors and actuators, a microcontroller can act as an active device that

responds to various inputs by sending control signals to other branches of a circuit that controls

their corresponding actuators.

The microcontroller our group decided to use was an Atmega-128 based microcontroller

that was programmed with an Olimex AVR-MT128. Similar to the STK500 board, this unit is

programmable via JTAG ports behind the unit connect to a PC via a USB cable. The MT-128 is

Equipped with an LCD display, capable of outputting status messages, character strings or any

other information a user wishes to display. In addition to the LCD, the MT-128 has other usable

features such as 6 pushbutton switches, a relay and buzzer. As the main component of the

project, this unit controlled an external circuit that would function as a temperature controller,

utilizing a motion detector sensor, a temperature sensor, and a motorized fan.

5

Schematics

Circuit Diagram

U2

MEGA128.8MM

PA1/AD1
50

PC1/A9
36

PC2/A10
37

PC3/A1138

RESET/
20

XTAL1
24

XTAL223

PA0/AD0
51

PA2/AD2 49

PA3/AD3
48

PA4/AD4 47

PA5/AD5
46

PA6/AD6
45

PA7/AD7 44

PC0/A835

TOSC1/PG4
19

TOSC2/PG318

PC4/A12
39

PC5/A14
40

PC6/A1441

PC7/A15
42

ADC7/TD1/PF754 ADC6/TD0/PF6
55 ADC5/TMS/PF5
56 ADC4/TCK/PF457 ADC3/PF3
58 ADC2/PF259 ADC1/PF1
60 ADC0/PF0
61

AVCC64

AVREF
62

AGND
63

PB7/OC2/OC1C
17

PB6/OC1B 16

PB5/OC1A
15

PB4/OC0 14

PB3/MIS0
13

PB2/MDSI
12

PB1/SCK 11

PB0/SS
10

G
N

D
22

G
N

D
53

V
C

C
52

V
C

C
21

D1
LM335/TO92

R1
RESISTOR

VCC_BAR

Q1
2N3904

Q2
2N3904

Q3
2N3904

VCC_BAR

MG1

MOTOR AC

1
2

D2
DIODE

R2
60ohm

R3
90ohm

B1 B2 B3 B4 B5

R4
22K

R5
22K

R6
22K

R7
22K

R8
22K

U3

Motion Sensor

GND 2+Vcc
3

OUT
1

U4

LCD

DB4
11

V0
3

VD
D

2

DB5
12

DB6 13

DB7
14

RS
4

R/W
5

E 6

R9

POT

+5V'

+5V

 6

BlockDiagram

AVR MEGA 128
Microcontroller

Motion Sensor
Possible chips include

Not found yet

Temperature Sensor
Possible chips include

DS18S20 3pins

Motor
This will run at 3 speeds
and two directions which

will be controlled using the
microcontroller, h bridge

and varying the duty cycle.

There will be an set of
switches that will allow the
user to say which speed

they want the fan if different
then the automatic settings.

Optional: An LCD that will
output the temperature of
the room, what speed the

fan is going and which
direction. Also if the motion

sensor is tripped or not.

Temperature Difference Motion Sensor Fan Speed
2 Active 1
4 Active 2
6 Active 3

4 Deactive 1
8 Deactive 2

12 Deactive 3

Fan Control Block Diagram

The fan control allow the user to
set the fan to change speeds
automatically depending on if

there is motion in the room and
the temperature difference that is

in the room.

Garry Jackson and
Jason Jocson

3/23/2006

 7

Description

The initial function of this project is to simulate an automatic temperature control system that

could be used in closed areas where ambient temperatures fluctuate. However, in order to save

electricity, a motion sensor that is integrated into the circuit is used to activate a variable-speed fan

which operates either at the users desired setting, or an automated setting that is dependent on the

temperature difference of the room’s measured temperature and an internally set temperature

determined by the user.

 In the user manual mode, a motion sensor enables the circuit to be set at a specific fan speed to

cool the room. As long as there is a presence that the motion detector senses, the fan will continue

cool the room at its set speed. If the user leaves the room with the fan on, the motion detector will

disable the fan and turn it off to save electricity.

 In the automatic mode, a motion sensor will enable the circuit to actuate a fan to cool the room

automatically. If the temperature difference in the room is 1-5 degrees from its set point, the fan will

automatically spin at 1/3 of its speed. If the temperature difference is between 6 -10 degrees from its

set point, the fan will spin at 2/3s of its speed. If the temperature difference is greater than 10 degrees

from the set temperature, the microcontroller will set the fan to its full speed to cool the room the

fastest.

Methodology

 When taking on a new electronics project, it is important to carefully organize the methods in

which the project must be performed. Because there can be various systems and subsystems to deal

with, it is best to break the systems down into smaller, manageable tasks to complete. In putting

together our project, we chose to approach it by segmenting it in terms of hardware procedure and

software procedure.

 8

When building the temperature control system, I prepared a workspace that could

accommodate the tools, equipment, and materials that were required for the project. By clearing a

large area on my desk, I placed soft absorbing cloth across the workspace so that any loose materials

will not easily roll of the desktop in the event of any parts or pieces becoming loose to bounce and roll

off the desk. The soft material can absorb any stray moving components and catch it before it gets lost.

This prepared me to take the necessary steps in getting ready for the assembly of the project.

 Our main source of instruction in building the circuit was to follow the schematic we generated

by using MultiSim. After populating the breadboard with the 2N3904 transistors, and resistors, we

applied +5 voltage through the circuit to simulate the controller sending the voltage coming from the

mictrontroller. We were able to get 3 different voltage outputs to the fan, which would represent a fan

speed at each stage. The transistors would act as an electronic switch that, when triggered, it would

open the 12V supply to the fan.

 At each stage, we inserted resistors on 2 of the 3 stages to reduce the voltage going to the fan.

This would result in a Lo, Med, and Hi setting.

 The temperature sensor and the motion sensor both operate on +5V and have one output pin.

The Vcc and Ground pins were then connected directly on the breadboard and the output pin was tied

to the microcontrollers input. The Motion sensor was tied to the one of the port pins while the

temperature controller was connected to the ADC. This would allow for the controller to use a closed

feedback system where the temperature sensor would feed a voltage into the ADC and the

microcontroller would compare it to a setpoint temperature fixed inside the microcontroller.

 The microcontroller would then take the comparison and determine what speed the fan should

go to by checking against an index of temperature differences. If the measured temperature was within

2 degrees of the setpoint, it would trigger the Lo setting of the fan. If the measured temperature was

within 3-5 degrees of the set temperature, it would trigger the Medium setting of the fan circuit, and

any temperature 6 degrees or greater it would trigger the maximum output (12V) to the fan.

 9

Problems Encountered
Building tips:

1. No power – ac voltage is not reaching the circuit. By measuring the voltage across

various resistors, pin ports and IC leads, we were able to troubleshoot and determine the

culprit of not having any power to our circuit

2. Bad soldering – soldering leads onto our sensors and fans may have bad solder joints an

can cause a bad connection for power continuity throughout the circuit

3. Wires go the wrong places – sometimes leads would be placed into the wrong row of a

breadboard and would cause a misconnection or open circuit

4. Wrong part or parts put in the wrong places – the resistors we used may have been

mistaken for a wrong value. Sometimes if we need a 1K resistor, we got mistaken by

reading the color codes as a 10K

5. Polarized parts put in the wrong, way - Transistor pin-out varies, so check the pin-out of

the devices you get. Electrolytic caps often look like a short if the voltage is reversed.

6. Bad parts – even when we confirmed that our circuit was wired up correctly, we were

able to narrow our problem down to a bad part. A defective motion sensor will not

allow the rest of the circuit. After we replaced it, it worked fine.:

In the website http://www.geofex.com/Article_Folders/howto.pdf, the author discusses several tips for

troubleshooting electronic circuits:

• For NPN transistors used as amplifiers, with no signal, the collector is the most positive

voltage, usually by at least a couple of volts; the base is somewhat lower and the emitter is

invariably 0.5 to 0.7V (0.2 to 0.3 in germanium) lower than the base. If this is not true,

something is fouled up about the biasing on that stage.

• For PNP transistors used as amplifiers, with no signal, the collector is the most negative

voltage, usually by at least a couple of volts; the base is somewhat higher and the emitter is

 10

http://www.geofex.com/Article_Folders/howto.pdf

invariably 0.5 to 0.7V (0.2 to 0.3 in germanium) higher than the base. If this is not true,

something is fouled up about the biasing on that stage.

• For bipolar (NPN/PNP) transistors, if the collector/base, collector emitter or base/emitter are

exactly the same voltage, either there is a circuit board short or the device is internally shorted

and dead.

• To check a bipolar transistor, read the collector voltage; short the base to the emitter with a clip

lead. The collector voltage should go up except for cases where the collector is tied to the +

power supply. In that case, the emitter will go down significantly.

• Measure the power voltages of IC's directly at the pins of the IC

• Op-amps used as linear amplifiers must have the negative input and the positive input at the

same voltage +/- a few millivolts of the positive input. If this is not true, the op-amp is dead or

the circuit board is fouled up some way (not true if it's used as a comparator!)

• Op-amp positive and negative inputs and output pins should usually all be between +2 and +7

volts DC with respect to ground in single battery systems for linear amplifier op-amps, not

including some special “rail-to-rail” op-amps, comparator use and some precision rectifiers.

Conclusion
 Upon the completion of our project, we were happy that it was able to function correctly. The

circuit design and software debugging were the most difficult to implement, but once it started to work,

the trouble became worthwhile and was very rewarding for our group.

If we had more time to complete the project, we could make a display that would look more

practical, rather than just have some electronic breadboard populated with transistors, resistors and

capacitors. Instead, we can cover the circuit and make a display of a model bedroom that had an

overhead fan with the temperature sensor in the corner of the room. It was an idea to use an 1157

 11

automotive bulb to place near the temperature sensor that would simulate heat from the sun to trigger

the the fan to an appropriate speed.

Ultimately, we were satisfied that our project was able to function properly and do what it was

designed to do.

 12

References

http://www.geofex.com/Article_Folders/howto.pdf

http://home.iae.nl/users/pouweha/lcd/lcd0.shtml#pin_assignment

http://www.olimex.com/dev/images/avr-mt128-sch.gif

 13

http://www.geofex.com/Article_Folders/howto.pdf
http://home.iae.nl/users/pouweha/lcd/lcd0.shtml#pin_assignment
http://www.olimex.com/dev/images/avr-mt128-sch.gif

Appendix

Software Program

/***
This program was produced by the
CodeWizardAVR V1.24.6 Professional
Automatic Program Generator
© Copyright 1998-2005 Pavel Haiduc, HP InfoTech s.r.l.
http://www.hpinfotech.com
e-mail:office@hpinfotech.com

Project : ME 106 - Fan Controller
Version : 1.0
Date : 5/10/2006
Author : Garry Jackson and Jason Jocson
Company :
Comments:
Reads if there is motion in a room and what the temperature is and determines the speed of the fan.
Output if there is motion, the temperature, and the fan speed to the LCD display.

Chip type : ATmega128
Program type : Application
Clock frequency : 8.000000 MHz
Memory model : Small
External SRAM size : 0
Data Stack size : 1024
***/

#include <mega128.h>
#include <delay.h>
#include <stdio.h>

// Alphanumeric LCD Module functions
#asm
 .equ __lcd_port=0x15 ;PORTC
#endasm
#include <lcd.h>

// External Interrupt 0 service routine
interrupt [EXT_INT0] void ext_int0_isr(void)
{
// Place your code here

}

#define ADC_VREF_TYPE 0x00

// Read the AD conversion result
unsigned int read_adc(unsigned char adc_input)
{
ADMUX=adc_input|ADC_VREF_TYPE;
// Start the AD conversion
ADCSRA|=0x40;
// Wait for the AD conversion to complete
while ((ADCSRA & 0x10)==0);
ADCSRA|=0x10;
return ADCW;
}

// Declare your global variables here

#define MOTION_SENSOR PORTB.3
#define FAN_SPEED1 PORTB.4
#define FAN_SPEED2 PORTB.5
#define FAN_SPEED3 PORTB.6

#define B1 PINA.0
#define B2 PINA.1
#define B3 PINA.2
#define B4 PINA.3
#define B5 PINA.4

const unsigned char Intro[] = " Fan Controller Version: 1.0 ";
char lcd_buffer[33]; // Buffer for storing output for the LCD display
unsigned char motionint; // Motion sensor checking loop number
unsigned char motionrun; // Motion sensor high returns per loop
unsigned char motion_laststate; // Last motion sensor state
unsigned char motion_state; // Current montion sensor state
unsigned char motion_state_number; // Number of runs in current state reading
unsigned char motion_display; // Display text for if the display on or off
unsigned char temperature; // Temperature ADC reading
unsigned char temp_c; // Temperature in c
unsigned char temp_desire=30; // Desired Temperature
unsigned char temp_c_diff; // Temperature Difference
unsigned char fan_speed; // Fan Speed
unsigned char button_loop; // Loop number for button reading
unsigned char control_auto;

unsigned char control_state; // Control State is used for auto mode or manual fan speed
// Fan Speed Temperature Difference

unsigned char m_active_s1=2; // set the temperature variation

 15

unsigned char m_active_s2=4; // set the temperature variation
unsigned char m_inactive_s1=4; // set the temperature variation
unsigned char m_inactive_s2=8; // set the temperature variation

void main(void)
{
// Declare your local variables here

// Input/Output Ports initialization
// Port A initialization
// Func0=In Func1=In Func2=In Func3=In Func4=In Func5=In Func6=Out Func7=In
// State0=T State1=T State2=T State3=T State4=T State5=T State6=0 State7=T
PORTA=0x00;
DDRA=0x40;

// Port B initialization
// Func7=Out Func6=Out Func5=Out Func4=Out Func3=In Func2=In Func1=In Func0=In
// State7=0 State6=0 State5=0 State4=0 State3=T State2=T State1=T State0=T
PORTB=0x00;
DDRB=0xF0;

// Port C initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTC=0x00;
DDRC=0x00;

// Port D initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTD=0x00;
DDRD=0x00;

// Port E initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTE=0x00;
DDRE=0x00;

// Port F initialization
// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In
// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T
PORTF=0x00;
DDRF=0x00;

// Port G initialization
// Func4=In Func3=In Func2=In Func1=In Func0=In
// State4=T State3=T State2=T State1=T State0=T

 16

PORTG=0x00;
DDRG=0x00;

// Timer/Counter 0 initialization
// Clock source: System Clock
// Clock value: Timer 0 Stopped
// Mode: Normal top=FFh
// OC0 output: Disconnected
ASSR=0x00;
TCCR0=0x00;
TCNT0=0x00;
OCR0=0x00;

// Timer/Counter 1 initialization
// Clock source: System Clock
// Clock value: Timer 1 Stopped
// Mode: Normal top=FFFFh
// OC1A output: Discon.
// OC1B output: Discon.
// OC1C output: Discon.
// Noise Canceler: Off
// Input Capture on Falling Edge
// Timer 1 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
// Compare C Match Interrupt: Off
TCCR1A=0x00;
TCCR1B=0x00;
TCNT1H=0x00;
TCNT1L=0x00;
ICR1H=0x00;
ICR1L=0x00;
OCR1AH=0x00;
OCR1AL=0x00;
OCR1BH=0x00;
OCR1BL=0x00;
OCR1CH=0x00;
OCR1CL=0x00;

// Timer/Counter 2 initialization
// Clock source: System Clock
// Clock value: Timer 2 Stopped
// Mode: Normal top=FFh
// OC2 output: Disconnected
TCCR2=0x00;
TCNT2=0x00;
OCR2=0x00;

 17

// Timer/Counter 3 initialization
// Clock source: System Clock
// Clock value: Timer 3 Stopped
// Mode: Normal top=FFFFh
// Noise Canceler: Off
// Input Capture on Falling Edge
// OC3A output: Discon.
// OC3B output: Discon.
// OC3C output: Discon.
// Timer 3 Overflow Interrupt: Off
// Input Capture Interrupt: Off
// Compare A Match Interrupt: Off
// Compare B Match Interrupt: Off
// Compare C Match Interrupt: Off
TCCR3A=0x00;
TCCR3B=0x00;
TCNT3H=0x00;
TCNT3L=0x00;
ICR3H=0x00;
ICR3L=0x00;
OCR3AH=0x00;
OCR3AL=0x00;
OCR3BH=0x00;
OCR3BL=0x00;
OCR3CH=0x00;
OCR3CL=0x00;

// External Interrupt(s) initialization
// INT0: On
// INT0 Mode: Rising Edge
// INT1: Off
// INT2: Off
// INT3: Off
// INT4: Off
// INT5: Off
// INT6: Off
// INT7: Off
EICRA=0x03;
EICRB=0x00;
EIMSK=0x01;
EIFR=0x01;

// Timer(s)/Counter(s) Interrupt(s) initialization
TIMSK=0x00;
ETIMSK=0x00;

// Analog Comparator initialization
// Analog Comparator: Off
// Analog Comparator Input Capture by Timer/Counter 1: Off

 18

ACSR=0x80;
SFIOR=0x00;

// ADC initialization
// ADC Clock frequency: 125.000 kHz
// ADC Voltage Reference: AREF pin
ADMUX=ADC_VREF_TYPE;
ADCSRA=0x86;

// LCD module initialization
lcd_init(16);

// Global enable interrupts
#asm("sei")

lcd_gotoxy(0,0); // goto the top left corner
lcd_putsf(Intro); // write intro message to display
delay_ms(5000); // pause 5seconds

while (1)
 {
 temperature=read_adc(0); // Read the ADC value for the temperature sensor

 temp_c=temperature+14; // Convert the ADC temperature value to c

 temp_c_diff=temp_c-temp_desire; // Find the difference between measure and desired
temperature

 if(control_auto=="YES") // If control=yes then check motion sensor and select fan speed
 {

 motionint=0; // clear motionint counter for while loop that checks for motion
 motionrun=0; // clear motionrun counter for while loop that checks for motion
 while (motionint<4) // run this loop until motionint=4 and exit
 {
 if(PINB.3==1) // check if there is signal on pinb.3 which is the motion sensor
 {
 motionrun++; // if the motion sensor is active increment motionrun
 }
 motionint++; // increment motionint for next while loop
 delay_ms(250); // wait .25 seconds before the next check
 }

 if (motionrun>0) // if the motion sensor went hi during one of the 4 checks set
motion_state=active
 motion_state="active";
 if (motionrun==0) // if motionrun=0 set it to inactive showing that the sensor did not pick
up movement
 motion_state="inactive";

 19

 // if the current state is not equal to the last state this function will increment motion_state_number
 // this if/else is designed for the circuit doesn't go between active inactive over and over because of
 // false reasing or someone keeps coming in and out of the room very frequently.
 if (motion_laststate!=motion_state)
 {
 motion_state_number++;
 }
 else if (motion_laststate!=motion_state && motion_state_number==1)
 {
 motion_laststate=motion_state;
 motion_state_number=0;
 }

 //This set of if/else look at the desired temp and the temp being read to decide what speed the fan
should be.
 if (motion_laststate=="active" && temp_c_diff<=m_active_s1) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=3;

 else if (motion_laststate=="active" && temp_c_diff<=m_active_s2) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=2;

 else if (motion_laststate=="active" && temp_c_diff>m_active_s2) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=3;

 if (motion_laststate=="inactive" && temp_c_diff<=m_inactive_s1) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=1;

 else if (motion_laststate=="inactive" && temp_c_diff<=m_inactive_s2) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=2;

 else if (motion_laststate=="inactive" && temp_c_diff>m_inactive_s2) // Fan Speed temperature
varience if motion sensor is active
 fan_speed=3;
 }

 if(fan_speed==1)
 {
 FAN_SPEED1=1; //turn the low speed on
 FAN_SPEED2=0; //turn the medium speed off
 FAN_SPEED3=0; //turn the high speed off
 }

 20

 if(fan_speed==2)
 {
 FAN_SPEED1=0; //turn the low speed off
 FAN_SPEED2=1; //turn the medium speed on
 FAN_SPEED3=0; //turn the high speed off
 }
 if(fan_speed==3)
 {
 FAN_SPEED1=0; //turn the low speed off
 FAN_SPEED2=0; //turn the medium speed off
 FAN_SPEED3=1; //turn the high speed on
 }

 if(motion_laststate=="active") // check state of motion_laststate and set motion_display=1 if active
 // this shows a 1 or 0 on the display depending on which one is set.
 motion_display=1;
 else
 motion_display=0;

 //load the top line into the lcd_buffer for lcd_puts. sprintf replace the %#u with the number in the
 //variable temp_c and fan_speed
 sprintf(lcd_buffer,"Temp:%3u Speed:%1u",temp_c,fan_speed);
 lcd_clear(); //clear the display
 lcd_gotoxy(0,0); //move to the top left
 lcd_puts(lcd_buffer); //write the buffer to the lcd display
 sprintf(lcd_buffer,"MontionSensor:%u",motion_display);
 lcd_gotoxy(0,1);
 lcd_puts(lcd_buffer);

 button_loop=0;
 while (button_loop<200) // button loops runs every 50ms for 200 times and the main loop starts
again
 {
 if (B1==0) //if b1 or top button pressed go into auto mode
 control_auto="YES";
 control_state=1;
 if (B2==0) //if b2 or left button pressed turn fan to speed 1 and auto off
 {
 control_auto="NO";
 fan_speed=1;
 control_state=0;
 }
 if (B3==0) //if b3 or middle button pressed turn fan to speed 1 and auto off
 {
 control_auto="NO";
 fan_speed=2;
 control_state=0;
 }

 21

 if (B4==0)
 { //if b4 or right button pressed turn fan to speed 1 and auto off
 control_auto="NO";
 fan_speed=3;
 control_state=0;
 }

 delay_ms(50); // wait 50ms before next loop start
 button_loop++; // increment button_loop for next loop number.

 }

 };
}

 22

	 Table of Contents
	 Summary
	Introduction
	Schematics
	
	Circuit Diagram
	Description
	Methodology
	Problems Encountered
	Building tips:

	Conclusion
	 References
	
	Appendix
	Software Program

