Digital I/O Laboratory

DIO-1

Digital Signal Input and Output
Learning Objectives:
After successfully completing this lab, students will be able to:

· Describe the digital input and output functions of the Arduino microcontroller board

· Read logic-level signals from an input port

· Set logic-level signals on an output port

· Use digital logic integrated circuit (IC) chips to perform higher-level logic functions
· Create software functions to replace specialized ICs, and to consider software/hardware trade-offs

· Explain the positives and negatives of using the Arduino library functions for I/O rather than direct port access
Components:
Qty.
Item
1
Arduino microcontroller board and USB cable.

1
Custom 4-mode common anode (CA) 7-segment LED display board with integrated current-limiting resistors

1
Custom mini-board containing two (active-low) tactile switches and two (active-high) red LEDs

1
solderless breadboard

jumper wires

Introduction:
In this lab you will explore a small fraction of the general-purpose input/output capabilities of the Arduino microcontroller board.
Microcontrollers are inherently digital devices that employ discrete binary values, 0 and 1, corresponding to the voltages 0 V and (in our case) 5 V, respectively. The discrete value of 0 V is considered a “Low” value, logical 0, and 5 V is considered a “High” value, or logical 1. The Arduino board (which uses the ATmega328 microcontroller) can directly service up to 20 digital inputs or outputs. When a pin is configured as a digital output, it means that a program running on the Arduino can change the pin voltage to be either 0 V (also called ground, or common potential) or 5 V by writing a 0 or 1 to that pin, respectively. As digital input, it means that the world outside the microcontroller can change the voltage on the pin to either 0 V or 5 V, and the microcontroller will associate it to either a logical 0 or 1.

In this lab, you will use a dual (two-digit) 7-segment light-emitting diode (LED) display as digital outputs and the switches on the mini-board as digital inputs. Both boards are pictured together below.
[image: image1.emf]
7-Segment Display Board
The 7-Segment Display board was designed to demonstrate four different ways of driving a 7-segment LED. The board contains two 7-segment LED displays integrated into a single dual 7-segment display, and circuitry to drive each of the two segment displays using two different methods each, for four methods total. A “real” display board would be designed to accommodate just one of these methods depending on the needs of the user, not four methods split across each of the two digits. This particular construction was chosen rather to give you the opportunity to compare and contrast the benefits and shortcoming of each of the four methods.

The four methods (which are by no means the only ones) usable on this board are direct segment access, BCD-to-7-Segment decoder, shift register, and I2C expander. However the current lab procedure will only discuss direct segment access and the BCD decoder methods.
As constructed, the left digit of the display may be driven either using the BCD decoder, or the I2C expander, and the right digit only using the direct, or the shift register for access.
It should be noted that only the BCD decoder method is specifically used to drive a 7-Segment LED, whereas the other three methods may be used to increase the number of general purpose input-outputs for most types of problems. One of the major goals of this lab is to show you a few methods to more efficiently utilize the 20 I/O pins contained on the Arduino. It is quite realistic to be able to control hundreds of independent I/Os using the techniques demonstrated in this lab
.
Dual 7-segment LED display
A 7-segment LED is nothing more than 7 LEDs arranged in a pattern that displays a digit when the appropriate segments are lit. These displays come in two basic types: common anode (CA) and common cathode (CC). CA types have all of the anodes of the 7 LEDs connected together, with each of the 7 cathodes independently controllable. Power is applied to the common anode, and a given segment is lit when its cathode is grounded. Figure 1 below shows a schematic diagram of a CA 7-segment LED. The letters shown in the diagram identify each particular LED segment. This “a”-”g” naming scheme is almost universal among all manufacturers of 7-segment displays.

[image: image16.png]DEC1B!
DECAC/SCL]
DECAD/SDA;

DEC1A

RIP

1"

b
1

m

BI/REO

rE1 S
LT ©

oo o o= [

e
%)

BCD—?SegmGgDnt Decoder

Figure 2. 7-segment LED Display Types: Common Anode (CA) and Common Cathode (CC). Power is applied to both common anode pins (pin 13 and pin 14). A segment is lit when its cathode is then grounded through a current limiting resistor. Pin positions are numbered from 1 to 18.
A dual 7-segment LED display is simply two single 7-segment LED displays combined into one package. Each digit has its own common (anode or cathode) pin, but this board ties the two anodes together into one connection back to the 5V power source on the Arduino. For the CC-type of display, the two pins would be common cathodes, leading instead to ground
.

Because it is almost always necessary to use an in-series current limiting resistor with an LED, resistors have been designed into the 7-segment display board that you are using for this lab experiment. If you look at the back of the display board, you can see the tiny surface-mount device (SMD) resistors in series with every trace connected to a display segment. A photo of the back of the board showing these resistors may be found in Figure 3.
[image: image7.png]

Figure 3: Photograph showing the location of the resistors on the back of the board.
Many 7-segment LED displays also provide a decimal point LED in the unit, which technically make the unit an 8-segment display. The LED display used on this board contains one RH (right-hand) decimal point for each digit, for a total of 16 separately controllable LEDs. Since each digit has its own common (power or ground) pin, the result is an 18-pin package.
Assuming that each LED has a 2V drop across it when it is lit, what is the maximum amount of current that will be sourced or sunk through each connected I/O pin on the Arduino/ATmega328 when an LED segment is turned on?
If every (16 total) segment were to be turned-on at the same time, and the sum of all of these currents had to be sunk through the microcontroller simultaneously, what percentage of the total current able to be sourced/sunk by the ATmega328 would be consumed by just these LEDs (refer to the Absolute Maximum Ratings section of the ATmega328 datasheet) ?
Method 1: Direct LED Segment Access
It is highly recommended that you take a look at Appendices C and D if you need additional help understanding how/why code should be split between the setup() and loop() functions, and the difference between Arduino-style and PORT-style programming.
Because CA (common-anode) displays have all of their LEDs' anodes tied together, the microcontroller only has access to each LED's cathode. Therefore this pin must be taken low (to 0V/ground) to make the LED turn on, since the anode is fixed at 5V.
[image: image8.png]ey

digital output pins

Arduino/ATmegaaze

You will now drive the segments of the right-hand digit LED display directly from the microcontroller. Once again, because the LED board contains sufficient current-limiting resistors between the microcontroller pins and each LED segment, you can drive each segment directly from the Arduino's 5V/0V output pins. Once again, because the display is common-anode (CA), the LED segments are active-low – that is, setting a pin LOW turns the LED on.

Each of the eight segments (“a” through “g” and the decimal point), as documented in Figure 2, are connected to the eight pins on the right of the display board, labeled “A” through “G” and “P” for decimal point. We will not be using the decimal point for these exercises, which means that we have seven connections to make to the right-hand digit, for the segments “a” through ”g”. Because it's always good to avoid using Arduino Digital Pins 0 and 1 if you can avoid it (since these pins are used during the download/programming process), we will use pins starting with Digital Pin 2 through Digital Pin 8.
[image: image9.png]6/5:0.00/8,5]0/5/0)

Disconnect your Arduino from its power source (the USB cable) now. This is the only sure way to prevent frying your Arduino while making connections to/from the breadboard.

1. To use direct segment access, the shift register chip should be removed from the right-hand socket on the display board, if it is present when you receive it. This prevents the shift register and direct access from both trying to drive the right-hand digit of the display at the same time (potentially creating short-circuits if one source drives an LED high and the other drives it low)

.
[image: image10.png]QT 000000000

| oo oL Eptorer
b o dofo o d L Aoy

2. All of the exercises in this lab will require you to connect 5V and GND from the Arduino's female POWER header to the “5” and “0” pins on the display board, respectively. Make these two connections now. It is highly recommended that you (always) use a red wire for 5V and a black wire for GND.
[image: image11.png]

3. Make connections using jumper wires from Digital Pin 2 to “G”, Digital Pin 3 to “F”, up through Digital Pin 8 to “A”, respectively. These are your connections from the microcontroller to each of the LEDs' cathodes for the right-hand digit. The anode power for the LED will come from the “5” (5V) connection that you made above. Current is sunk from the LEDs down through these cathode connections, completing each LED's circuit.

4. Connect your Arduino to the PC and download the sketch direct_ardustyle.pde, from the course website. What does the right-hand digit of dual 7-segment display show? Record this for your report. If you see no number, you have a problem you need to remedy before you continue. Use the LED display's datasheet to figure out what you expect the voltage to be at pins a..g on the right digit, then measure each pin’s voltage and document your findings.

This sketch is called direct_ardustyle, because it is written “Arduino-style” – that is, it uses the Arduino library functions rather than using direct PORTx access and the bit-wise C-language operators =, |, &, ~, and binary/hexadecimal constants. Later you will learn how to use the port I/O registers to accomplish the same thing, which will allow you to compare and contrast the two styles.

5. Modify the sketch to alternately display ‘2’ then '4' on the right-hand digit instead of whatever the sample sketch displays. This should give you a sense for what is involved in displaying patterns directly on a 7-segment LED using the Arduino library functions. Call your sketch direct24_ardustyle and include it in your lab report.
6. Overhaul the sketch to use PORT-style programming to display the number 5 on the right-hand digit. You may not use any Arduino functions, only the DDR, PORT and PIN registers and the C-language bit-wise operators. Call your sketch direct5_portstyle and include it in your lab report. You may use the code template direct5_portstyle.pde on the course website to get started.

6. Write a sketch that implements a function called rightDigitDirect() that takes an int valued 0 through 9 as a parameter, and displays that digit on the right-hand digit of the display. This function must use PORT-style programming. If you can figure out a way of writing this function that uses segment data stored in arrays (or better yet, a single two-dimensional array) that is considerably shorter, go for it. Otherwise, you should use a C-language switch-case statement (specifically, do not use a series of if-else statements). You will need to come up with your own acceptable representations of 0 through 9 for the LED display, although you should feel free to use the data in the table in Appendix A for the numeric digit segment patterns.
Test this function to complete a sketch to count down continuously from 9 to 0 with one-second pauses in between. Include this test program which also contains the rightDigitDirect() function in your lab report.
Leave your direct-access wiring in the Arduino and the display board, as you will continue to use it in the next exercises.
Method 2: 7447 BCD-to-7-segment (CA) display driver
One common way of driving 7-segment LEDs is by using a BCD-to-7-segment decoder/driver chip. BCD stands for Binary Coded Decimal, and essentially means that the chip takes in a binary value to display, and outputs the pattern for a decimal number. The binary number being input is encoded in four bits, and digital logic circuits inside the chip drive the appropriate 7 outputs, which are connected to the 7-segment LED display to display the requested decimal number. The 7447 decoder chip is used to drive CA displays. The related 7448 is similarly used to drive CC displays. Figure 3 shows the pin-out diagram for the 7447 and summarizes its operation. A more complete excerpt of the 7447 is included in Appendix A. The part number for our 7447 is (likely) “SN74LS47”, the other letters denoting the architecture family of the chip.
What advantage(s) and disadvantage(s) are there with using a dedicated decoder chip like the 7447 with a 7-segment LED display, versus driving the LED segments directly from Arduino pins? Consider hardware complexity, software complexity, power requirements, wiring, available I/O, etc.
By convention, Pin 1 on any DIP package (dual in-line package, the plastic chip package with the downward-facing pins) is always the first pin counter-clockwise from the U-shaped notch, (or dot) on the package. Pin numbers increase counter-clockwise back around to the reference point. Some ICs will only have the notch or the dot; some may have both.
 SHAPE

Figure 8. 7447 BCD-to-7-segment decoder driver chip. This chip takes a 4-bit binary number input as DCBA, where A is the least significant bit (LSB), and internally grounds the appropriate pin 9-15, so that when these pins are connected to a 7-segment LED display through current limiting resistors, the corresponding decimal number will appear on the display. The 7447 is used to drive common anode (CA) displays
.
Interfacing to 7-Segment Display using BCD-to-7-Segment Decoder
On our 7-segment display board, the left-hand digit is connected to a 7447 BCD-to-7-segment decoder. The ABCD pins on the chip are connected to the ABCD pins on the left side of the header on the display board. The pin labeled “P” is for access to the decimal point.

[image: image12.png]e ¢
20, %

5/0/0/5/0[6/555:0%500)

[image: image3.jpg]reEBfLA Ra)

e

28

2
FEEREEERY R R R

Figure 10: Past semesters' wiring requirement for this lab (when two 7447s were used to control both digits), now replaced by the 7-segment display board. The yellow packages are resistor arrays, essentially eight resistors integrated into one package. The black packages are the 7447 decoders.
[image: image13.png]

Figure 11 below is a schematic diagram showing the relationship between display board headers, the ABCD inputs on the 7447 decoder chip, and the pins (R1A..R1G & R1P) on the 7-segment LED display.
Figure 11: This schematic illustrates the connections from the display board’s header pins, the ABCD decoder input pins, and the 7-segment display's left-hand digit.
Procedure:

In this part of the lab we are going to add the mini-button-board to the 7-segment display circuit to provide inputs that can influence the displayed value.

8. Using the 5V power and ground source from the Arduino, use wire jumpers on the breadboard to tie the all four of the ABCD pins for the decoder (as shown in Figure 9) on the display board to ground. What number is displayed on the left-hand digit of the display? Change the A pin from GND to 5V. Now what number is displayed on the display? Leaving A on 5V, also change the B pin from GND to 5V. What is this third number being displayed? Note that this technique can/should be used to validate hardware before trying to use it from the Arduino as this helps eliminate the possibility of “hardware issues” if “nothing seems to be working”. This same test procedure could have been done to check the “a” through “g” segments in the direct-access exercises, by the way.

9. Disconnect the four hard-wired jumpers to the ABCD pins and use wire jumpers to connect Arduino Analog Pin 0 to display board header pin A (still as in Figure 9). Connect Analog Pin 1 to header pin B, Analog Pin 2 to header pin C, and Analog Pin 3 to header pin D. Download decoderdemo_ardustyle.pde from the course website and run it on your Arduino. What does the left-hand digit of the display show? (If you see no number, you have a problem that you need to remedy before you continue.) Use the datasheet to figure out what you expect the voltage at pins 9, 10, 11, 12, 13, 14 and 15 of the 7447 chip (NOT the Arduino pins 9-15) to be, and document your findings.

9. Modify the program to display ‘6’ on the left-hand digit instead of the number that the demo program displays. Which pins of the 7447 do you expect to be at 5V, and which are low when '6' is displayed? Experiment by displaying numbers between 0 and 9 on the different digits until you are satisfied with your understanding of what is happening between the Arduino pins, the decoder chip inputs/outputs, and the LED display.

10
Download decoder_portstyle.pde from the course website and use it as a template to create a sketch that also displays the number 6 on the left-hand digit, but using only PORT-style programming. Include your sketch in your lab report.
12.
Write a sketch that implements a function called leftDigitDecoder() that takes an int valued 0 through 9 as a parameter, and displays that digit on the left-hand digit of the display, similar to how rightDigitDirect() worked. Use this function to complete a sketch to count down continuously from 9 to 0 with one-second pauses in between.

13.
Using the leftDigitDecoder() function that you just wrote along with the rightDigitDirect() function from the direct-access exercise, write a sketch that counts continuously up from 00 to 99 with 100msec pauses in between numbers. Hint: You will probably find the “/” and “%” C-language operators useful for this exercise. If you don’t understand how they work, search the Arduino reference pages for the modulo function.
14.
Describe how and why using the Arduino I/O functions (for output, in this case) is better/easier or worse/painful for Exercises 8-9 compared to Exercise 10. Also include any conclusions that you can make about the different code styles' compiled program sizes.
Mini board (two LEDs, two switches)
This board is simply two LEDs and two buttons on one handy board, designed to be easily used for projects where it doesn't make sense to use buttons directly on the Arduino. We made a separate board for the buttons because, while popular, these buttons don't fit easily into a solderless breadboard.

[image: image14.png]T

(2}
£
a
o)
w
a
=
@
S
(o)
o)
o
N~

Designed by

Eric B. Wertz

We will not be using the LEDs on this board, so we need only discuss the use of the buttons. The board contains a ground (GND) connection pin that must go to the Arduino. The two buttons' pins are labeled SW1 and SW2. These need to be connected to their own pins on the Arduino, and for this lab we are using Analog Pins 4 and 5 (which double as Digital Pins 18 and 19 when using the digital*() functions). The schematic diagram for this board is shown below. You will need to use both buttons later in the lab.
Push-button switches are either on or off, which makes them great examples of very simple single-bit digital sensors. A simple digital switch, no matter what its construction (magnetic, inductive, capacitive, lightbeam-break, metal-to-metal contact, etc.) is ultimately simply open, or closed. Depending on how they are arranged, they are either active-high or active-low.

The switches we are using here are momentary SPST-NO (single-pole, single-throw, normally-open) push-button switches. They are also tactile switches, basically a designation that they require low-force to actuate. These switches have four leads, and two leads on the same side of the switch are tied together internally, as are the two leads on the opposite side. Although there are ultimately only two electrical connections to the switch, having four leads provides better mechanical stability and support. When the button on the switch is pressed, an electrical connection is made between the two sides.

One side of each switch is connected to ground, and the other side must be pulled-up to 5V using the ATmega328's internal, programmable pull-up resistors, because no external pull-up resistors are present on the board. The switch circuit is such that the voltage at SWn will be LOW (ground) when the button is pressed, and HIGH (5V) when not pressed. This configuration is called active-low, which means that when the switch is active (pressed), its digital output is low. This is in contrast to active-high, where the digital output is high when the switch is pressed. Whenever you encounter digital sensors (such as switches), determine whether they are active-high or active-low before you try to write code to interface them to a microcontroller.
So far we have been dealing with the digital output capabilities of the Arduino/ATmega328. Now let’s bring in the some of its digital input capabilities.

Getting switches to work in a design is generally a simple, two-step process. The first step is making sure that either the circuitry ensures that well-defined high and low values are readable at the microcontroller's input pin(s) when the switch is up or down (in particular, that the signal isn't floating when closed or open). You should note that if no external pull-up or pull-down resistors are present, then you can be fairly certain that it is necessary to use the internal pull-up(s) in the microcontroller to give the input signal voltage a well-defined value in both of the switch's open and closed states. The second step is to determine whether the button is wired to be active-high, or active-low.

15.
To test your understanding of digital input and output, write a sketch to display “00” if neither button is pressed, “11” if SW1 is pressed, “22” if SW2 is pressed, or “33” if both buttons are pressed simultaneously. You should use the leftDigitDecoder() and rightDigitDirect() functions that you've already written. Demonstrate this code working for your TA, but there is no need to include it in your lab report.

16.
Write a sketch called counter_portstyle, using PORT-style programming, that will cause the display to count up (continuously, with 0.5 second pauses between numbers) as long as SW1 is pressed and held down, and count down when SW2 is pressed and held down. Ensure that the corner cases of rolling up through 99 and down through 00 are handled in a reasonable fashion (you can choose to stop at 0 and 99, or to roll over). Include this code in your lab report for counting up/down using both buttons.
Describe how or why using the 7-segment decoder (7447) chips are desirable versus using direct-segment-access. Are there any advantages to using direct-segment-access, over hardware decode, and if so, what are they? Is there anything that you can do one way, and not the other?
Appendix A
DM7446A, DM7447A

BCD to 7-Segment Decoders/Drivers
Fairchild Semiconductor, 2001
[image: image4.emf][image: image5.emf]
[image: image6.jpg]Note

(Note 2)

(Note 3)
(Note 4)

(Note 5)

Outputs

a

H

H
H
[

BIRBO
(Note 1)

Inputs
D

A

B

c

RBI

]

Decimal or

Function

10

11

12
13
12

Bl
RBI

Dont Care

X=

oW ievel

Figure 13. Logical schematic and I/O interpretation of the 7447 chip.
Appendix B - Hexadecimal Number Representation
Hexadecimal (also called “base-16”) is a numbering system in which there are 16 distinct symbols, 0-9 and A-F. While the digits 0-9 in a hex number represent the same decimal numerical values you are familiar with, the digit A in hex represents 10, B 11, C 12, D, 13, E 14 and F 15. Hexadecimal is often used in programming because a two-digit hex number can be used as shorthand to represent 8 binary values: the leftmost hex digit covers the leftmost four binary places and the rightmost hex digit covers the remaining 4 binary places. Just like the decimal number system you are familiar with, binary and hexadecimal numbers have place values. In a decimal number the rightmost place is the ones place (100), the next place to the left is the tens place (101), the next is the hundreds place (102), and so on. In a binary number the place values are (also from right to left): ones (20), twos (21), fours (22), eights (23), and so on. Similarly, hexadecimal places are ones (160), sixteens (161), two-fifty-sixes (162), etc. Places increase as powers of 16 in similar fashion to the powers of 10 in decimal numbers that you are familiar with.

To convert four binary digits into a hexadecimal digit, just add up each binary digit multiplied by its place value. Thus, for the binary number, 1010, 1(8)+0(4)+1(2)+0(1) = 10, which in hex is 'A'.

The same logic applies converting from hexadecimal values to binary. Choose the binary digits (0 or 1), so that when each is multiplied by its place value, it gives the hex value you are looking for. For example, hex E represents decimal 14, and 1(8)+1(4)+1(2)+0(1) = 14, so the corresponding binary number is 1110.
For the purposes of our class we will generally only be using pairs of hexadecimal digits, because ports and registers are grouped as eight pins (bits), and hexadecimal representation is more concise (and generally more convenient once you get it) than binary. Table 1 lists binary, hex, and decimal numbers from 0 through 15.

It is especially common to use hex digits to specify constants in C-language programs because they are a natural way to specify relatively long sequences of binary digits (bits) concisely. C makes this easy by using a prefix of “0x” on a constant to signify that the value is in hexadecimal. Consequently, one “always” specifies all-eight-bits-high in a register as 0xFF, rather than as 255. As it turns out, the compiler that we are using additionally implements a (non-standard) prefix of “0b” for specifying binary constants, so for example, “0b11111111” may also be used. However, once you get used to using hex values, you will likely prefer “0xFF” to “0b11111111” because the former is considerably easier to say, hear, read and type.
Table 1. Binary, Hexadecimal, and Decimal Values. HEX is a shorthand way to represent 4 binary digits.

	Binary
	
	HEX
	Decimal

	0
	0
	0
	0
	
	0
	0

	0
	0
	0
	1
	
	1
	1

	0
	0
	1
	0
	
	2
	2

	0
	0
	1
	1
	
	3
	3

	0
	1
	0
	0
	
	4
	4

	0
	1
	0
	1
	
	5
	5

	0
	1
	1
	0
	
	6
	6

	0
	1
	1
	1
	
	7
	7

	1
	0
	0
	0
	
	8
	8

	1
	0
	0
	1
	
	9
	9

	1
	0
	1
	0
	
	A
	10

	1
	0
	1
	1
	
	B
	11

	1
	1
	0
	0
	
	C
	12

	1
	1
	0
	1
	
	D
	13

	1
	1
	1
	0
	
	E
	14

	1
	1
	1
	1
	
	F
	15

Appendix C – Relationship between Arduino library pin naming and ATmega PORT bits
[image: image15.png]PORTD

PARTB

TCEaTT==]

Digital 1/0

As you should know from lecture, there are two ways to read or write individual pins on the Arduino board. You may either use the Arduino library's digitalRead()or digitalWrite() functions, or you may set/clear bits in the ATmega328’s I/O ports directly. The physical pin layout on the Arduino, the Arduino library's pin number assignments, and native ATmega PORTx:BITx names and bit numbers are again summarized in Figure 14.
Figure 14. Arduino digital pin layout with ATmega PORTx
 locations. This diagram shows the relationship between the ATmega328 ports (PORTB, PORTC, or PORTD), the Arduino’s digital pin numbers, and their physical locations on the board (or a shield) itself. Using these mappings, you can choose to use either the Arduino library I/O functions with their Arduino pin number, or use direct bit manipulations using PORTx (where x can be B, C, or D), or even mix-and-match them in your sketches (programs).
As you can see, each I/O port contains up to eight bits. Each port behaves similar to a byte-sized variable in memory, except rather than each bit representing a bit in memory, it physically represents a hardware pin on the chip package. Ports also behave like variables in a program in that they have names and can be read and written just like variables that you declare and use yourself. The major difference is that the ports’ memory locations are fixed in the hardware, and their names are pre-defined in system header files (that you never see) for your use, and need not be declared by you.

Appendix D - General Software Construction Techniques
When writing programs, it is strongly recommended that you configure your ports and set their voltage levels before you get into the main part of your code. The Arduino program structure divides these two parts of your program into distinct functions for you to fill out – initialization code should be placed in setup(), and your main code goes in loop(), as you've seen in the previous labs.

Within setup(). there are generally four types of initializations to be performed:

1. The first is to set your pins' direction, that is, specifying each as an input or an output. This is done by using the pinMode() function, or by setting the appropriate bits in the PORT's DDRx (Data Direction Register) register. The convention for using the Arduino function is pinMode(pin, direction), where pin is 0..19, and direction is either INPUT or OUTPUT. Using direct register access, you set the corresponding bit in the DDRx register, where 1 means output, and 0 means input. An example of two equivalent ways to perform the same initializations is demonstrated below.
Example: Consider a circuit that requires the Arduino to use four input pins and four output pins to control it. Digital I/O pins 8, 9, 10 and 11 are the circuit's inputs, and pins 2, 3, 4, 5 are the outputs. How would you establish these pins' directions using Arduino library functions, and direct port manipulation?

Using Arduino library functions:

Using direct PORT access:
 pinMode(2, OUTPUT);

DDRD = 0x3c; // or 0b00111100

 pinMode(3, OUTPUT);

DDRB = 0xf0; // or 0b11110000
 pinMode(4, OUTPUT);

 pinMode(5, OUTPUT);
 pinMode(8, INPUT);

 pinMode(9, INPUT);

 pinMode(10, INPUT);

 pinMode(11, INPUT);
What advantages and disadvantages do you see with each method?
2. If a pin is designated as an output in setup(), set its initial voltage – either high (5 V) or low (0 V) – depending on what makes sense for its initial state given the requirements of the connected circuitry. If these pins' values are established in loop() immediately after setup() finishes, this step is technically unnecessary, as long as they are initialized early-on in your sketch's execution.

Using Arduino library functions:

Using direct PORT access:

digitalWrite(2, LOW);

PORTD &= 0b11000011;

digitalWrite(3, LOW);

// or PORTD &= ~0x3C

digitalWrite(4, LOW);

digitalWrite(5, LOW);
3. If a given pin is to be used as an input, enable its pull-up resistor, if required. Remember, the magic combination of actions to make a pin an input with pull-ups enabled is – clear pin's DDR bit, set pin's PORT bit, or using the Arduino functions pinMode INPUT, digitalWrite HIGH.

Using Arduino library functions:

Using direct PORT access:

digitalWrite(8, HIGH);

PORTB = 0x0f;

digitalWrite(9, HIGH);

digitalWrite(10, HIGH);

digitalWrite(11, HIGH);
4. Other modules' and objects' initializations, configurations and initializations are performed, such as those for a Serial object (using its begin() function), or Servo object setup (with its attach() function).

When specifying constants to be assigned to ports (or variables, for that matter), you can use whatever radix (base-n numbering system) is most clear or convenient. In almost all cases, bitwise constants are specified as binary or as hexadecimal. Atmel uses an additional notation for “building” multi-bit constant values, namely the use of the _BV() (for Bit-Value) macro function. The argument to _BV() is the index of the bit in the constant you wish to specify. As it turns out, this index is also the number of times that the value 1 is shifted to the left to produce the constant
. For example, _BV(0) is equivalent to 1<<0, 0b00000001, 0x01 and 1, while _BV(1) is equivalent to 1<<1, 0b00000010, 0x02, and 2, likewise _BV(7) is equivalent to 1<<7, 0b10000000, 0x80, and 128, etc. All of these many ways of specifying constants are presented in Table 1 below.

Multiple constant bits may be joined together into one constant byte using the bitwise-OR (|) operator
. For example, (_BV(7) | _BV(4) | _BV(2)) is equivalent to ((1<<7) | (1<<4) | (1<<2)), 0b10010100, 0x94, and decimal 148.

Table 1: Summary of different methods of specifying a (bitwise) constant
	Bit #
	7
	6
	5
	4
	3
	2
	1
	0

	Binary
	0b10000000
	0b01000000
	0b00100000
	0b00010000
	0b00001000
	0b00000100
	0b00000010
	0b00000001

	Hex
	0x80
	0x40
	0x20
	0x10
	0x08
	0x04
	0x02
	0x01

	_BV(n)
	_BV(7)
	_BV(6)
	_BV(5)
	_BV(4)
	_BV(3)
	_BV(2)
	_BV(1)
	_BV(0)

	Shifted
	1<<7
	1<<6
	1<<5
	1<<4
	1<<3
	1<<2
	1<<1
	1<<0

	Decimal
	128
	64
	32
	16
	8
	4
	2
	1

Setting initial output pin voltage levels is especially important at power-up/reset so that they are in a known-safe state before either the hardware or software powers-up and starts running. For example, if one output pin was connected to a power interface driving the left arm of a laser-wielding robot, we might want to make sure that the pin voltage was set so that laser doesn’t fire until we determined that it was pointing in an appropriate direction. Less exciting perhaps, but arguably better.
�Figure 1. Simple button-LED and four-way dual 7-segment LED boards

�Figure 4. Schematic diagram showing the equivalent electrical connections between power, ground, segment LEDs and microcontroller pins.

�Figure 5. Location of (right-hand digit) LED segments' direct access pins on display board.

�Figure 6. Jumper to enable/disable shift register chip

�Figure 7. Location of 5V/GND pins on display board, to be powered from the Arduino.

b

c

d

e

g

a

f

7447

8

1

7

4

5

2

3

6

9

16

10

13

12

15

14

11

B

C

D

A

+5 V

LT

BI/RBO

RBI

�Figure 9. Detail of the connections of the bottom edge of the board with the five pins used for decoder access (ABCDP) highlighted

�Figure 12. Schematic diagram of Mini-ButtonLED-board. The five-pin connector is inserted into the solderless breadboard. The switches are active-low and LEDs are active-high. Note that there are no pull-up resistors connected to the switches. You must program the ATmega's internal pull-up resistors to give the switch input signal a defined value when the button is not being pressed. Not pulling-up an open switch results in the switch's input value floating with no defined voltage.

�	Due to a hardware design bug only two access methods (one for each digit) may be used on this board at the same time. The problem is that two outputs can't reliably be tied together to feed a shared input without the two driving inputs interfering with (backpowering, to be exact) each other. The workaround is to only have one socketed chip in place at a time for each digit (or on the case of the direct/shift-register side, don't use both sets of inputs at the same time).

�	This 7-segment LED display board is designed to be able to handle either a CA or CC display by setting the jumper to the left of the display appropriately, however this feature has yet to be tested. It should also be noted that the 7447 decoder chip will only work with CA LED displays.

�	 Two-pin jumpers are used to bridge/short two pins together to enable a connection between them. When the connection is to be open, it is best/customary to connect the jumper to only one pin, leaving the other dangling so as not to lose the jumper.

�	The intent was to use the two-pin jumper next to the shift register to cut-off power to the chip in this board's current design. However, this isn't enough to keep current from flowing through the shift register chip even when it's unpowered (it gets hot!). A future board revision will isolate the interaction between direct-access and the shift register inputs to the LEDs.

�	 A 7448 is used to drive common cathode displays, but this chip is pretty much impossible to find nowadays.

�	PORTx is a generic way to denote any port, where x is a placeholder for a letter, such as: PORTA, PORTB, PORTC, etc. DDRx is a similar designation for DDRA, DDRB, etc.

�	The _BV() “function” is really a #define macro provided in the Atmel (contained within the Arduino) header files, and not any standard C-language function. _BV() is implemented as “#define _BV(n) (1<<(n))”, that is, it returns the eight-bit (byte) equivalent to bit “n” being set to 1.

�	Do not, not, not get the bitwise-OR (|) operator confused with the logical-OR (||) operator. The former is used for bit manipulation, and the latter for logical tests (if this OR that). Bitwise-AND (&) and logical-AND (&&) behave similarly. For example, a bitwise statement usually manipulates one or more status bits packed into a single byte (or register), for example:

		portControl = (CTRL_ENABLE | CTRL_DELAY | CTRL_AUTORESET);

	rather than:

		if (isRaining || (isWindshieldDirty && haveWiperFluid))

			turnOnWipers();

San José State University Dept. of Mechanical and Aerospace Engineering
rev.-3.6.1
23AUG2013

