Addendum to Bit Manipulation Handout
BJ Furman

25FEB2011

Registers

To effectively and efficiently program microcontrollers, one needs to learn how to manipulate individual bits in registers, the special memory locations that the microcontroller uses to control and carry out its operations. The three registers that one must deal with for Input/Output (IO) operations with an ATmega microcontroller are: Data Direction (DDRx), Data (PORTx), and Port Input Pins (PINx). [The ‘x’ represents the letter enumeration scheme for the associated ports. In the particular case of the ATmega328, x could be B, C, or D]. Each of these three registers is 8-bits (1 byte) wide.
	Register
	Comments

	DDRx
	Controls data direction: writing a 1 to the associated bit location makes the corresponding pin to be an OUTPUT; writing a 0 makes the pin to be an INPUT.

	PORTx
	For a pin configured as an OUTPUT, the PORTx register provides the way to control the digital voltage of the pin: writing a 1 to the associated bit location drives the pin to logic HIGH; writing a 0 drives the pin to logic LOW.
For a pin configured as an INPUT, the PORTx register provides the way to control the pullup resistor for the pin: writing a 1 to the associated bit turns the pullup resistor on; writing a 0 turns the pullup resistor off.

	PINx
	Contains the almost current ‘snapshot’ of the digital state of the pins in the associated port. This is the register used to ‘read’ the digital state of a pin.

Working with bits in registers – bit masking
The technique to access or change individual bits in registers takes some getting used to. The big idea underlying the technique is that when we work with a register, we always have to handle all 8 bits of the register together – there is no direct way to work on a single bit level. Consequently, we will use bitwise logical operators and bit masks to ‘drill down’ to an individual bit or groups of bits. A bit mask is a construct of 8 bits that is used in much the same way that a painter uses masking tape to keep sections of a surface from getting painted.
As explained in the handout on Bit Manipulation (http://www.engr.sjsu.edu/bjfurman/courses/ME106/lectures/handout_bit_manipulation.doc), you can use the _BV(n) macro to create a bit mask with a ‘1’ in the bit position corresponding to the value of n. The macro for _BV(n) is a #define:
#define _BV(n) (1<<(n))
which indicates the more direct way of building bit mask: using the bit shift left operator, << .

To determine if a particular bit in a register is set, use a bit mask with a bit in the position of interest and perform a bitwise AND between the 8 bits in the register and the bit mask. If the resulting value is not zero, the bit is set, else the bit is clear. For example, to check if pin 5 of PORTD is at logic HIGH, use a bit mask with a ‘1’ in the location for bit 5, _BV(5) or (1 << 5) and bitwise AND together with the PIND register contents. The table below illustrates what is happening, supposing bit 5 is set in PIND. (The ‘Xs’ indicate ‘don’t care’ what the values are: it doesn’t matter if they are ‘1’ or ‘0’). Go column by column doing a bitwise AND operation between the bit in the PIND register and the bit in the bit mask. The last row in the table is the result.
	bit
	7
	6
	5
	4
	3
	2
	1
	0

	PIND
	X
	X
	1
	X
	X
	X
	X
	X

	(1 << 5)
(this is the bit mask)
	0
	0
	1
	0
	0
	0
	0
	0

	PIND & (1 << 5)
	0
	0
	1
	0
	0
	0
	0
	0

So, if you wanted to take a particular action if bit 5 was set, the following test would accomplish the selection:
if(PIND & (1 << 5))

{

do stuff… ;

}

else

{

do other stuff… ;

}

Note that if bit 5 in the PIND register were clear, the value of the result from PIND & (1 << 5) would be zero.

Exercises (write Arduino-style and port-style code snippets to accomplish the following tasks)

1. Set bits 7, 4, and 1 of DDRD, but leave the other bits in the register undisturbed.

2. Clear bits 4, 3, and 0 of PORTD, but do not disturb the other bits in the register.

3. Suppose that pins 7, 6, 5, and 4 of port D on the Arduino are connected to digital sensors (like switches, where they present either logic HIGH or logic LOW to the pins), and pins 3, 2, 1, and 0 are connected to LEDs through series resistors to ground. Display the logic levels on pins 7-4 on pins 3-0. So if pins 7 and 4 are HIGH, and 6 and 5 are LOW, then the LEDs on pins 3 and 0 will be on, but those on 2 and 1 will be off.
Page 2 of 2

BJ Furman | ME/EE 106 Introduction to Mechatronics| handout_bit_manipulation_addendum.doc | 25FEB2011

