
Table of Contents

Title Page………………………………………………………………………………….-

Table of Contents……………………………………………………………………...…1

Summary ..2

Introduction..3

Game Overview..3

 Hardware ...4

 Electronics………………………………………………………………………….6

 Software…………………………………………………………………………...10

Outcome ..14

Reference ..15

Appendix……………………………………...…………………………………………16

1

Summary

For the term project in Introduction to Mechatronics at San Jose State University,

our team decided to build a variant of “Ski-Ball,” the common arcade game. The main

differences between our version of Ski-Ball and the well known version are that ours

forces the user to aim for a certain target in order to earn points, rather than aiming for

any target and getting a score dependant on which target is hit. Our game also differs in

that it has a ninety second timer during which the user can hit as many targets as time

allows, while the common version of the game offers an unlimited amount of time but a

limited number of balls to toss.

To provide the timing, scorekeeping, and random target generation, we used the

OOPic microcontroller from Savage Innovations. The code for the game was almost

entirely composed of Virtual Circuits, which greatly increase the speed of the

computations and allow for many operations to be performed simultaneously. The

hardware for the target was constructed mainly out of quarter inch plywood and one-

eighth inch particleboard. Single pole-single throw switches were used to tell if a ball

had passed through a target, and basic green light emitting diodes were used to indicate

which target would result in points if hit. Four seven-segment LEDs were used along

with a display driver to display the current score and remaining time.

During the course of this project, we learned a great deal about the programming

of the OOPic microcontroller and electrical and mechanical construction. Through the

course of this project, we learned how to program, create, and showcase a game that a

user was able to easily interact with using the OOPic microcontroller.

Introduction

 In order to produce a game that would offer the user a certain amount of

2

interaction and entertainment, our group first generated several ideas each and presented

them to each other. These ideas ranged from puzzle and trivia games to a racecar game,

and even a game that would allow a housecat to play. We then presented a list of ten

ideas to the course professor, and received feedback on which would offer us many

educational opportunities, as well as the ability to become an entertaining game. The

professor returned out ideas and suggested our idea of a target game, which we agreed to

work on and the modified it to a variant of the common arcade game known as Ski-Ball.

Our version of Ski-Ball integrated several principles that were covered during the

semester. Among these were microcontroller programming, basic mechanical design,

and circuit design and building. The portions of the project that incorporate

microcontroller programming are obvious, the timer, scoreboard, random target

generation and score counting are all done on the OOPic. The mechanical design portion

was mainly the design of the target and ball return mechanism, and had little to do with

what was discussed during the semester. The electrical circuit design was the other

section of the project that dealt with the class a great deal. The main circuits that needed

to be built were the display drivers for the scoreboard and timer, and the transistor

switches to turn the target LEDs on and off in response to signals from the OOPic.

Game Overview

Our game consists of three major systems: hardware, electronics, and software.

The hardware consists mainly of the target and ball return mechanism. The electronics

system has major subsystems: display drivers, and switches for lighting LEDs and

detecting successful scores. The software has several subsystems, among these are:

random number generator for the target determination, counters for the clock and timer,

and clock dividers. A system block diagram of our game is shown in Figure 1.

3

Figure 1. System Block Diagram.

Hardware

Our target board was constructed out of an 18 by 18-inch piece of one-quarter

inch plywood. Holes were drilled for targets and slots were cut for pieces of one-eighth

inch particleboard to serve as guides. Smaller holes were drilled above each target for

LEDs to fit inside, to light up each target. Strips of felt were glued onto surfaces that the

balls regularly hit to cut down on the noise and lower the amount of bouncing. Our target

is shown below in Figures 2 and 3.

4

Figure 2. Target Board.

5

Figure 3. Close-Up of One Target Hole with LEDs.

Electronics

Electronic circuit design played a large part in our project. We needed to design

display drivers for each of our four seven segment LEDs that indicate the score and

remaining time. We also needed to design a circuit that lit standard LEDs and allowed

the OOPic to detect button presses. A photograph of out entire electronic circuit

assembly is shown in Figure 4.

 Display Drivers

 For our display drivers we used 7447 decoder chips to convert a four bit binary

number into a value that could be displayed as a one-digit number on a seven segment

LED. In order to prevent out seven segment LEDs from burning out, we first sent the

signal from the 7447 decoder through a 220-Ohm resistor before sending it to the LED

Display. Each of the four display drivers are identical, so all schematics and photographs

6

only show one driver.

Figure 4. Circuit in Breadboard.

+V

V1
5V

R1
220 abcdefg.

V+

DISP1

74LS47
A3
A2
A1
A0

test
RBI

g
f
e
d
c
b
a

RBO

U1

Figure 5. Schematic of Display Diver.

7

Figure 6. Photograph of Display Driver.

Figure 7. LED Array Used for Scoreboard and Timer.

 Switches

 Our game uses two different types of switches to accomplish two different tasks,

mechanical switches to detect when a ball passes through a target, and electrical

8

transistor switches to turn on LEDs. The mechanical switches are basic double pole-

single throw switches shown in Figure 8. When the lever is pressed, the two pins with

the leads soldered on are shorted, while the center pin and the pin with no lead create an

open circuit. As we only need a switch that shorts when pressed, the third pin was not

needed in this case.

Figure 8. Single Pole-Double Throw Switch.

The transistor switches that were used were common NPN Bipolar Junction Transistors

with an hfe of approximately 100. In order to ensure that only the target with the lit LED

could potentially send a hit signal to the OOPic, the mechanical switches were wired to

the emitter of the transistor. The inputs on the OOPic were then fed into an Or gate to

output whenever a switch was pressed. The output of the OR gate was then linked to an

oBit object called score. So if a switch is pressed when its LEDs are on, score is

momentarily taken high. This enables us to use the OOPic to keep the appropriate score.

This circuit is shown in Figure 9.

9

TO DIGITAL INPUTS
ON OOPIC

FROM RANDOM OUTPUT
OF OOPIC

+V

V1
5V

S1

D2
LED1

D1
LED1

Q1
NPN

Figure 9. Schematic of Switch Circuit.

Software

The last and most time-consuming portion of the project was by far the programming.

This took the longest largely due to the combination of the material being new and

various bugs within the OOPic programming language. The main subsystems of the

program are the counters to count the score upward and the time downwards, clock

dividers to enable one digit of each display to serve as a tens digit, and a random number

generator to randomly choose a target. For reference, the entire code along with a flow

chart for our game is shown in Appendix A.

Counters

 One of the most basic functions of our game is to keep track of several values and

display them on a seven-segment LED. One set of LEDs needs to count the time down,

and the other needs to count the score up. The OOPic object best suited to our needs here

is the oCounter object. Its function is to take in a signal from a source that it is linked to,

and increment or decrement the value of another object that it is also linked to. The

oCounter object can also function as a counter for a quadrature motor encoder, but the

oQencode object is better suited to this use. To ensure proper counting for a one-digit

display, the Input property can be used to provide a limiting value for each digit. If the

10

object is counting up, when the value equals the Input value, it is reset to zero. Likewise,

if the object is counting down, when the value gets less than zero, it is set to the Input

value and then decremented. In both cases, an Input value of ten results in the proper

wrap-around values for each digit. Thus, we used an oNibble object with the value set to

ten and linked it to the Input value of the oCounter object for all four digits. Each digit of

our display uses its own oCounter object to either increment or decrement its value, the

two digits for the score counting up and the two for the time counting down. The

ClockIn property of each counter is the rate at which it counts. For the ones digit of the

timer, we simply link its counter to the OOPic.Hz1 frequency that is provided by the

OOPic. Likewise, for the ones digit of the scoreboard, we can link to the output of the

score object to the ClockIn of its counter. The tens digit is where problems arise. In

order to ensure that the tens digit incremented when the ones digit wraps around, we need

to employ clock dividers.

 Clock Dividers

 Clock dividers allow us to generate nearly any frequency we want by

manipulating onboard frequencies. The OOPic object that performs a clock divider

function is the oDivider object. Like the oCounter, the oDivider has a ClockIn property

that links to a frequency. The Rate property is that value that the input frequency is

divided by. By dividing by ten for both dividers, we get a frequency that is one tenth of

the input. By inputting the OOPic.Hz1 frequency to the oDivider for the clock and the

score variable to the oDivider for the score, we get counters that count properly on both

the ones and tens digits.

 Random Number Generation

 In order for the OOPic to randomly choose a target for the user to aim for, we

need to use the oRandomizer object and four logic gates. The oRandomizer object has

two function called Result and Result2, which generate random Boolean values. By

feeding these values into four logic gates, we can get one of four oDio1 objects to go

high depending on one of the four combinations of the two Boolean values. A

representation of this Virtual Circuit is shown in Figure 10.

11

RESULT2RESULT

TARGET 2

TARGET 3

TARGET 4

TARGET 1

21

Figure 10. Virtual Circuit used in Randomization.

 Programming Bugs

During the course of the project, we encountered a few bugs associated with the

OOPic that need to be discussed briefly. The first bug that we ran into came about when

we used the oEvent object to execute a portion of code and then return to the main

program. It seemed that we were not able to call the same function twice in the same

while loop. But this problem was solved when the Operate property of the oEvent was

set back to cvFalse after the event was done running. This allowed us to call the same

event several times in the same loop.

The other problem was with the OOPic.Reset function. The problem with it is

that it simply does not work. When used, it either freezes the OOPic or does nothing at

all. This problem was solved by soldering an extra pin onto the reset line of the OOPic.

We could then place a jumper between that pin and any other pin, and when the other pin

was taken low, the OOPic would reset. The location of the extra pin is shown in Figure

11.

12

Figure 11. Location of Reset Pin.

Outcome

 After presenting our game to the class, there were a few things that we might like

to change if we had the time or were required to repeat the project. First, the game was

much harder than we had anticipated. This was largely due to the excessive bouncing

around of the balls. It seemed that every time someone was about to score in the

appropriate target, the ball would bounce out into the wrong one. Another problem that

we had was that there was no way to contain a ball that was mistakenly thrown off target.

If someone tossed the ball and it completely missed the target, it simply went flying

across the room. If we were to build some sort of wall to keep the balls from flying off,

the game would likely be much more enjoyable. Looking back at the project, we also

feel that it would make the game more fun if we added some sound effect to tell the user

when the game starts and stops, and when points are scored. Although there were a few

problems that we encountered, none of them had anything to do with our program or any

of our circuits. As the bulk of the class dealt with these two subjects, I feel that this

project was very beneficial to my education.

13

Reference

Alciatore, D.G. And Histand, M.B. Introduction to Mechatronics and Measurement

Systems (2nd ed.) Tata McGraw - Hill.

Furman, BJ. ME 106 Lab Manual. San Jose State University : Mechanical and

Aerospace Engineering Department, Fall 2003.

Furman, BJ. ME 106 - Term Project Information . San Jose State University :

Mechanical and Aerospace Engineering Department, Fall 2003.

Appendix A

14

//Code for Ski-Ball Game
//San Jose State University
//ME 106
//Fall 2003

//Objects for seven segment LEDs
oDio4 digit1 = new oDio4; //Object for First Digit
oDio4 digit2 = new oDio4; //Object for Second Digit
oDio4 digit3 = new oDio4; //Object for Third Digit
oDio4 digit4 = new oDio4; //Object for Fourth Digit

//Objects to light up target LEDs
oDio1 target1 = new oDio1;
oDio1 target2 = new oDio1;
oDio1 target3 = new oDio1;
oDio1 target4 = new oDio1;

//Objects to detect when a target is hit
oDio1 Hit1 = new oDio1;
oDio1 Hit2 = new oDio1;
oDio1 Hit3 = new oDio1;
oDio1 Hit4 = new oDio1;

//Object to be taken high for score incrementation
oBit score = new oBit;

//Limiting Values for all oCounter Objects
oNibble Limit = new oNibble;

//Counter Objects - One for each digit
oCounter clock1 = new oCounter; //Object to countdown the tens digit
 //in the countdown clock
oCounter clock2 = new oCounter; //Object to countdown the ones digit
 //in the countdown clock
oCounter count1 = new oCounter; //Object to count the tens digit of
 //the score
oCounter count2 = new oCounter; //Object to count the ones digit of
 //the score

//Gates for random target generation
oGate LED1 = new oGate(2);
oGate LED2 = new oGate(2);
oGate LED3 = new oGate(2);
oGate LED4 = new oGate(2);

//Gate to tell when target is hit
oGate Target_Hit = new oGate(4);

//Clock Dividers
oDivider divide_clock = new oDivider; //Divider for clock
oDivider divide_count = new oDivider; //Divider for score

//Event Objects
oEvent Start = new oEvent; //Starts game
oEvent Stop = new oEvent; //Stops game

//Wire objects
oDio1 Start_Game = new oDio1; //Start button
oWire Pass_Start = new oWire; //Passes value of button to
 //Start.Operate

//Randomizer object

15

oRandomizerC rand = new oRandomizerC;

sub void main(void)
{

//*****SETUP DISPLAY*****//
digit4.IOGroup = 1; //Make digit1 a 4 bit digital IO on pins D0 to
D3
digit4.Nibble = cvLow;
digit4.Direction = cvOutput;

digit3.IOGroup = 1; //Make digit2 a 4 bit digital IO on pins D4 to
D7
digit3.Nibble = cvHigh;
digit3.Direction = cvOutput;

digit2.IOGroup = 3; //Make digit3 a 4 bit digital IO on pins B0 to
B3
digit2.Nibble = cvLow;
digit2.Direction = cvOutput;

digit1.IOGroup = 3; //Make digit4 a 4 bit digital IO on pins B4 to
B7
digit1.Nibble = cvHigh;
digit1.Direction = cvOutput;
//*****DISPLAY SETUP*****//

//*****SET INITIAL VALUES ON CLOCK AND SCORE
digit1.Value = 9;
digit2.Value = 0;
digit3.Value = 15; //MUST BE 15 TO COUNT CORRECTLY
digit4.Value = 0;
//*****INITIAL VALUES SET*****//

//*****SETUP TARGET SENSORS*****//
Hit1.IOLine = 1; //Make target sensors digital
Hit1.Direction = cvInput; //inputs on lines 1 through 4

Hit2.IOLine = 2;
Hit2.Direction = cvInput;

Hit3.IOLine = 3;
Hit3.Direction = cvInput;

Hit4.IOLine = 4;
Hit4.Direction = cvInput;
//*****TARGET SENSORS SETUP*****//

//*****SETUP TARGET LIGHTS*****//
target1.IOLine = 16; //Make target lights digital
target1.Direction = cvOutput; //outputs on lines 16 through
 //18 and 21
target2.IOLine = 17;
target2.Direction = cvOutput;

target3.IOLine = 18;
target3.Direction = cvOutput;

16

target4.IOLine = 21;
target4.Direction = cvOutput;
//*****TARGET LIGHTS SETUP*****//

//*****SETUP START BUTTON*****//
Start_Game.IOLine = 7; //Make start button a digital
Start_Game.Direction = cvInput; //input on line 7
//*****START BUTTON SETUP*****//

//*****SETUP CLOCK DIVIDERS*****//
divide_clock.ClockIn.Link(OOPic.Hz1);
divide_clock.Rate = 10;

divide_count.ClockIn.Link(score);
divide_count.Rate = 10;
divide_count.InvertC = cvTrue; //MUST BE TRUE TO COUNT CORRECTLY
//*****CLOCK DIVIDERS SETUP*****//

//*****SETUP COUNTERS*****//

//Clock Counters
clock2.ClockIn1.Link(OOPic.Hz1); //Link input of clock2 to 1 Hz frequency
clock2.Output.Link(digit2.Value); //Link output of clock2 to value of ones digit
in timer
clock2.Direction = 1; //clock2 counts down
clock2.Mode = 0;
clock2.Tick = 0;
clock2.Input.Link(Limit.Value); //Reset to nine

clock1.ClockIn1.Link(divide_clock.Result); //Link input of clock1 to .1Hz
frequency
clock1.Output.Link(digit1.Value); //Link output of clock1 to tens digit of clock
clock1.Direction = 1; //clock1 counts down
clock1.Mode = 0;
clock1.Tick = 0;
clock1.Input.Link(Limit.Value); //reset to nine

//Score Counters
count1.ClockIn1.Link(score); //Link input of count1 to button
count1.Output.Link(digit4.Value); //Link output of count1 to ones digit of
scoreboard
count1.Direction = 0; //count1 counts up
count1.Mode = 0;
count1.Tick = 0;
count1.Input.Link(Limit.Value);

count2.ClockIn1.Link(divide_count.Result);
count2.Output.Link(digit3.Value);
count2.Direction = 0;
count2.Mode = 0;
count2.Tick = 0;
count2.Input.Link(Limit.Value);

//Limiting Value for all counters
Limit.Value = 10; //Value to reset to after digits get to
zero
//*****COUNTERS SETUP*****//

17

//*****SETUP WIRE*****//
Pass_Start.Input.Link(Start_Game); //Input is start button
Pass_Start.Output.Link(Start.Operate); //Output is event to start game
Pass_Start.Operate = cvTrue;
//*****WIRE SETUP*****//

//*****SETUP RANDOMIZER*****//
rand.ClockIn.Link(score); //Generate new random number when
rand.Operate = cvTrue; //point is scored
//*****RANDOMIZER SETUP*****//

//*****SETUP GATE FOR TARGET*****//
Target_Hit.Input1.Link(Hit1); //When an activated switch is
Target_Hit.Input2.Link(Hit2); //pressed, make score high
Target_Hit.Input3.Link(Hit3);
Target_Hit.Input4.Link(Hit4);
Target_Hit.Output.Link(score);
Target_Hit.Operate = cvTrue;
//*****TARGET GATE SETUP*****//

//*****SETUP RANDOMIZER GATES*****//
LED1.Input1.Link(rand.Result); //Make target1 high if
LED1.Input2.Link(rand.Result2); //both result and result
LED1.Output.Link(target1); //are low
LED1.InvertOut = cvTrue;
LED1.Operate = cvTrue;

LED2.Input1.Link(rand.Result); //Make target2 high if
LED2.Input2.Link(rand.Result2); //result = 0 and
LED2.Output.Link(target2); //result2 = 1
LED2.InvertIn2 = cvTrue;
LED2.InvertOut = cvTrue;
LED2.Operate = cvTrue;

LED3.Input1.Link(rand.Result); //Make target3 high if
LED3.Input2.Link(rand.Result2); //result = 1 and
LED3.Output.Link(target3); //result2 = 0
LED3.InvertIn1 = cvTrue;
LED3.InvertOut = cvTrue;
LED3.Operate = cvTrue;

LED4.Input1.Link(rand.Result); //Make target4 high if
LED4.Input2.Link(rand.Result2); //result and result2
LED4.Output.Link(target4); //are high
LED4.InvertIn1 = cvTrue;
LED4.InvertIn2 = cvTrue;
LED4.InvertOut = cvTrue;
LED4.Operate = cvTrue;
//*****RANDOMIZER GATES SETUP*****//

while(1)
{

//When time runs out, execute Stop code

if((digit1.Value == 0) & (digit2.Value == 0))
Stop.Operate = cvTrue;
}

}

18

//This function stops all of the counters and dividers,
//ending the game
sub void Stop_Code(void)
{
divide_clock.Operate = cvFalse;
divide_count.Operate = cvFalse;
count1.Operate = cvFalse;
count2.Operate = cvFalse;
clock1.Operate = cvFalse;
clock2.Operate = cvFalse;
rand.Operate = cvFalse;

}

//This function starts all of the counters and dividers,
//starting the game
sub void Start_Code(void)
{

divide_count.Operate = cvTrue;
divide_clock.Operate = cvTrue;
count1.Operate = cvTrue;
count2.Operate = cvTrue;
clock1.Operate = cvTrue;
clock2.Operate = cvTrue;

}

19

20

	Summary
	Introduction

