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O n August 9, 2006, the “Technology” section of the New York Times contained 
a news item titled “A Face Is Exposed for AOL Searcher No. 4417749,” in 
which reporters Michael Barbaro and Tom Zeller (2006) tell a story about 

big data and privacy:

Buried in a list of 20 million Web search queries collected by AOL and recently 
released on the Internet is user No. 4417749. The number was assigned by the 
company to protect the searcher’s anonymity, but it was not much of a shield. 
No. 4417749 conducted hundreds of searches over a three-month period on 
topics ranging from “numb fi ngers” to “60 single men” to “dog that urinates 
on everything.” And search by search, click by click, the identity of AOL user 
No.  4417749 became easier to discern. There are queries for “landscapers 
in Lilburn, Ga,” several people with the last name Arnold and “homes sold in 
shadow lake subdivision gwinnett county georgia.” It did not take much inves-
tigating to follow that data trail to Thelma Arnold, a 62-year-old widow who 
lives in Lilburn, Ga. . . . Ms. Arnold, who agreed to discuss her searches with 
a reporter, said she was shocked to hear that AOL had saved and published 
three months’ worth of them. “My goodness, it’s my whole personal life,” she 
said. “I had no idea somebody was looking over my shoulder.” . . .“We all have a 
right to privacy,” she said. “Nobody should have found this all out.”
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Empirical economists are increasingly users, and even producers, of large 
datasets with potentially sensitive information. Some researchers have for decades 
handled such data (for example, certain kinds of Census data), and routinely 
think and write about privacy. Many others, however, are not accustomed 
to  think about privacy, perhaps because their research traditionally relies on 
already-publicly-available data, or because they gather their data through relatively 
small, “mostly harmless” surveys and experiments. This ignorant bliss may not last 
long; detailed data of unprecedented quantity and accessibility are now ubiquitous. 
Common examples include a private database from an Internet company, data 
from a fi eld experiment on massive groups of unsuspecting subjects, and confi -
dential administrative records in digital form from a government agency. The AOL 
story above is from 2006; our ability to track, store, and analyze data has since then 
dramatically improved. While big data become diffi cult to avoid, getting privacy 
right is far from easy—even for data scientists.

This paper aims to encourage data-based researchers to think more about 
issues such as privacy and anonymity. Many of us routinely promise anonymity 
to the subjects who participate in our studies, either directly through informed 
consent procedures, or indirectly through our correspondence with Institutional 
Review Boards. But what is the informational content of such promises? Given that 
our goal is, ultimately, to publish the results of our research—formally, to publish 
functions of the data—under what circumstances, and to what extent, can we guar-
antee that individuals’ privacy will not be breached and their anonymity will not 
be compromised?

These questions may be particularly relevant in a big data context, where there 
may be a risk of more harm due to both the often-sensitive content and the vastly 
larger numbers of people affected. As we discuss below, it is also in a big data context 
that privacy guarantees of the sort we consider may be most effective.

Our paper proceeds in three steps. First, we retell the stories of several 
privacy debacles that often serve as motivating examples in work on privacy. The 
fi rst three  stories concern intentional releases of de-identifi ed data for research 
purposes. The fourth story illustrates how individuals’ privacy could be breached 
even when the data themselves are not released, but only a seemingly innocuous 
function of personal data is visible to outsiders. None of our stories involves security 
horrors such as stolen data, broken locks and passwords, or compromised secure 
connections. Rather, in all of them information was released that had been thought 
to have been anonymized, but, as was soon pointed out, was rather revealing.

Second, we shift gears and discuss differential privacy, a rigorous, portable privacy 
notion introduced roughly a decade ago by computer scientists aiming to enable 
the release of information while providing provable privacy guarantees. At the heart 
of this concept is the idea that the addition or removal of a single individual from 
a dataset should have nearly no effect on any publicly released functions of the 
data, but achieving this goal requires introducing randomness into the released 
outcome. We discuss simple applications, highlighting a privacy-accuracy tension: 
randomness leads to more privacy, but less accuracy.
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Third, we offer lessons and refl ections, discuss some limitations, and briefl y 
mention additional applications. We conclude with refl ections on current promises 
of “anonymity” to study participants—promises that, given common practices in 
empirical research, are not guaranteed to be kept. We invite researchers to consider 
either backing such promises with meaningful privacy-preserving techniques, or 
qualifying them. While we are not aware of major privacy debacles in economics 
research to date, the stakes are only getting higher.

Intuition May Not Be Enough: Cautionary Tales

Well-intentioned government or private entities in possession of a sensitive 
database may wish to make an anonymized version of the data public—for example, 
to facilitate research. We retell and discuss a few cautionary tales that illustrate how 
intuition-based attempts at anonymization may fail, sometimes spectacularly.1

When Anonymization Failed
The fi rst story is from the mid 1990s, when William Weld, then Governor of 

Massachusetts, approved the release of certain medical records of state employees 
to researchers, assuring the public that individual anonymity would be protected by 
eliminating obvious identifi ers from the data (Greely 2007). A few days after Weld’s 
announcement, Latanya Sweeney—then a graduate student at MIT—re-identifi ed 
Weld’s personal records (including diagnoses and prescriptions) in the database; 
she then had his records delivered to his offi ce.

While the medical data—offi cially, the Massachusetts “Group Insurance 
Commission” (GIC) data—had been “de-identifi ed” by removing fi elds containing 
patients’ name, address, and social security number (SSN) prior to the data release, 
the nearly 100 remaining fi elds included ZIP code, birth date, and sex. As Ohm 
(2010) tells the story, Sweeney

. . . knew that Governor Weld resided in Cambridge, Massachusetts, a city 
of 54,000 residents and seven ZIP codes. For twenty dollars, she purchased 
the complete voter rolls from the city of Cambridge—a database containing, 
among other things, the name, address, ZIP code, birth date, and sex of every 
voter. By combining this data with the GIC records, Sweeney found Governor 
Weld with ease. Only six people in Cambridge shared his birth date; only three 
were men, and of the three, only he lived in his ZIP code.

Barth-Jones (2012) revisits and critiques this story. Perhaps in response, Sweeney, 
Abu, and Winn (2013) use a similar method to re-identify individuals in the publicly 

1 As hinted above, these stories are well known in the computer science community that studies privacy. 
The fi rst three were revisited and discussed by Ohm (2010), a legal scholar, who provides further refer-
ences and links to primary sources.
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available Personal Genome Project database. Sweeney’s “How Unique Are You?” 
interactive website invites the visitor to “Enter your ZIP code, date of birth, and gender 
to see how unique you are (and therefore how easy it is to identify you from these 
values).” Her methodology is explained on the website (http://aboutmyinfo.net, 
accessed on August 9, 2013):

Birthdate . . . gender, and 5-digit postal code (ZIP) uniquely identifi es most peo-
ple in the United States. Surprised? . . . 365 days in a year × 100 years × 2 gen-
ders = 73,000 unique combinations, and because most postal codes have 
fewer people, the surprise fades. . . . [T]here are more than 32,000 5-digit ZIP 
codes in the United States; so 73,000 × 32,000 is more than 2 billion possible 
combinations but there are only 310 million people in the United States.

The next story, involving Ms. Arnold above, is from roughly a decade later. 
In 2006, AOL Research released detailed Internet search records of 650,000 users 
covering a three-month period, amounting to 20 million search queries.2 The stated 
purpose of the release was expressed by then AOL Research head Abdur Chowdhury:

AOL is embarking on a new direction for its business —making its content 
and products freely available to all consumers. To support those goals, AOL is 
also embracing the vision of an open research community, which is creating 
opportunities for researchers in academia and industry alike. . . . with the goal 
of facilitating closer collaboration between AOL and anyone with a desire to 
work on interesting problems.3

Prior to the data release, the search logs were de-identifi ed, for example by removing 
usernames and IP addresses, using instead unique identifi ers (such as “4417749”) 
to link all of a single user’s queries. This de-identifi cation, however, quickly proved 
far from suffi cient for the intended anonymization, as illustrated by the New York 
Times article on Ms. Arnold. Within days of the release, AOL apologized, removed 
the data website as well as a few employees, and silenced its research division. Of 
course, to this day, the data are widely available through a simple web search; once 
published, you cannot take it back.

The third story is also from 2006. About two months after the AOL debacle, 
Netfl ix announced a competition-—the Netfl ix Prize—for improving the company’s 
algorithm that predicts user ratings of fi lms, using only past user ratings. To allow 
competitors to train their algorithms, Netfl ix released a database with 100 million 
ratings of 17,770  fi lms by about 500,000  subscribers covering a six-year  period. 

2 As Ohm (2010) notes, different numbers appear in different accounts. The 650,000 fi gure above was 
described as 500,000 in the original post, and the 20 million fi gure in the original post has later been 
reported by some as 36 million.
3 Posting of Abdur Chowdhury, cabdur@aol.com, to SIGIR-IRList, irlist-editor@acm.org, http://sifaka
.cs.uiuc.edu/xshen/aol/20060803_SIG-IRListEmail.txt, as cited in Ohm (2010, accessed on August 9, 2013).
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Each record contained a movie title, a rating date, and a fi ve-point rating. As in 
the Massachusetts Group Insurance Commission and AOL cases, records were 
de-identifi ed prior to the release, replacing user names with unique identifi ers.

The illusion of protecting users’ anonymity was, again, short-lived. Two weeks 
after the data release, Narayanan and Shmatikov (2008; fi rst version posted in 
2006) demonstrated that “an adversary who knows a little bit about some subscriber 
can easily identify her record if it is present in the dataset, or, at the very least, 
identify a small set of records which include the subscriber’s record.” How little is 
“a little bit”? In many cases, a user could be identifi ed knowing as little as that user’s 
approximate dates and ratings of two or three movies. In their demonstration, 
Narayanan and Shmatikov used ratings from the Internet Movie Database (IMDB), 
which are publicly available and are linked to the raters’ identities, and showed how 
a handful of a user’s IMDB ratings, even when they yield imprecise information, 
could uniquely identify that user in the Netfl ix database.

Whereas IMDB’s public ratings may reveal only those movies that individuals 
are willing to tell the world that they have watched, Netfl ix ratings may reveal all 
of the movies an individual has rated, including those the rater may prefer to keep 
private—for example, fi lms that may refl ect a person’s sexual, social, political, or 
religious preferences. Moreover, to be re-identifi ed, one does not have to be on 
IMDB: as Ohm (2010) advises his readers, “the next time your dinner party host asks 
you to list your six favorite obscure movies, unless you want everybody at the table to 
know every movie you have ever rated on Netfl ix, say nothing at all.”

De-identifi cation and Beyond
De-identifi ed data were defi ned by Sweeney (1997) as data in which “all explicit 

identifi ers, such as SSN (Social Security number), name, address, and telephone 
number, are removed, generalized, or replaced with a made-up alternative.” Her 
defi nition seems to describe accurately the released Massachusetts health insur-
ance, AOL, and Netfl ix data in the stories above. Some more recent defi nitions 
(like those under federal health records privacy regulations) are stricter and 
would not consider the Massachusetts data released by Weld as de-identifi ed, but 
these defi nitions still focus on removing only specifi c kinds of information (Greely 
2007). Indeed, more than 15 years after Sweeney’s powerful demonstration, her 
defi nition of de-identifi ed data still describes, more or less accurately, common-
place practices among many researchers. For example, prior to publicly posting 
their data online (as required by some academic journals), economists often 
de-identify their data by merely withholding explicit identifi ers such as subject 
names. However, as in the stories above, the stated aim of such de-identifi cation—
and what is often promised to subjects, directly or via an Institutional Review 
Board—is anonymization. In Sweeney’s (1997) defi nition, anonymous data “cannot 
be manipulated or linked to identify an individual.” Clearly, de-identifi cation does 
not guarantee anonymization.

Sweeney’s re-identifi cation of people in the Massachusetts Group Insurance 
Commission data used birthday and fi ve-digit  ZIP  code, neither of which are 
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typically included in datasets publicly posted by economists. But it is not diffi cult 
to imagine re-identifi cation of specifi c subjects based on combinations of demo-
graphics such as study major, age/class, gender, and race, which are often not 
considered “identifi able private information” and are routinely included in posted 
data.4 Re-identifi cation is still easier with knowledge regarding, for example, the 
day and time in which a classmate or a roommate participated in a specifi c study 
session. (Sweeney, 2013, applies this idea outside the lab: she uses newspaper stories 
that contain the word “hospitalized” to re-identify individual patients in a publicly 
available health dataset in Washington state.) But re-identifi cation is possible even 
without such special knowledge, and it may be straightforward when targeting 
certain individuals who have a characteristic that is uncommon in a specifi c setting, 
such as minorities or women in certain fi elds and occupations.

This discussion highlights a weakness of de-identifi cation: if one assumes no 
restrictions on outside information (also referred to below as auxiliary informa-
tion), then, short of removing all data fi elds prior to a release, some individuals may 
be uniquely identifi ed by the remaining fi elds. One potential response to this weak-
ness is an approach called k-anonymity, which combines the assumption that there 
are some restrictions on outside information with the removal (or partial removal) of 
some fi elds. Specifi cally, assuming that outside information could only cover certain 
fi elds in the database, one could suppress these fi elds or, when possible, generalize 
them (for example, replace date of birth with year of birth) so that any combina-
tion of the values reported in these fi elds would correspond to at least k individuals 
in the data (Sweeney 2002). This approach has several weaknesses, and in many 
applications it implies either an unreasonably weak privacy guarantee or a massive 
suppression of data: notice that the amount of information that can be released is 
expected to shrink as k grows and as restrictions on outside information are weak-
ened. Narayanan and Shmatikov (2008), for example, discuss the issues with such 
an approach in the Netfl ix context.

An alternative approach is to make it harder for an attacker to leverage outside 
information. For example, prior to making the query logs publicly available, AOL 
could have replaced not only user identities but also the search keywords themselves 
with uniquely identifying random strings. Similarly, Netfl ix could have replaced 
movie names with unique identifi ers. Such an approach, known as “token-based 
hashing,” would preserve many features of the data, hence maintaining usefulness of 

4 For example, according to Cornell’s Offi ce of Research Integrity and Assurance (at http://www.irb
.cornell.edu, accessed on August 13, 2013):

 Identifi able private information is defi ned as: name; address; elements of dates related to an 
individual (e.g., birth date); email address; numbers: telephone, fax, social security, medical 
record, health benefi ciary/health insurance, certifi cate or license numbers, vehicle, account 
numbers (e.g., credit card), device identifi cation numbers, serial numbers, any unique identi-
fying numbers, characteristics, or codes (e.g., Global Positioning System (GPS) readings); Web 
URLs; Internet Protocol (IP) addresses; biometric identifi ers (e.g., voice, fi ngerprints); full face 
photographs or comparable images.
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the database for some (though clearly not all) research purposes. But the preserved 
features of the underlying data make this type of scheme vulnerable as well.

Indeed, shortly after the disaster at AOL Research, a group at Yahoo! Research 
(Kumar, Novak, Pang, and Tomkins 2007) showed that an attacker with access to a 
“reference” query log (for example, early logs released by Excite or Altavista) could 
use it to extract statistical properties of tokenized words in the database, and “invert 
the hash function”—that is, break the coding scheme—based on co-occurrences 
of tokens within searches. Along similar lines, Narayanan and Shmatikov (2008) 
speculate that in the Netfl ix case, such an approach “does not appear to make 
de-anonymization impossible, but merely harder.”

Privacy Risk without Data Release
Our fourth  story, of privacy compromised on Facebook by Korolova (2011), 

“illustrates how a real-world system designed with an intention to protect privacy but 
without rigorous privacy guarantees can leak private information . . . Furthermore, it 
shows that user privacy may be breached not only as a result of data publishing using 
improper anonymization techniques, but also as a result of internal data-mining of 
that data.”

Facebook’s advertising system allows advertisers to specify characteristics of 
individuals to whom an ad should be shown. At the time of Korolova’s (2011) 
attack, it was possible to specify those characteristics (for example, gender, age, 
location, workplace, alma mater) so fi nely that they would correspond to a unique 
Facebook user. Then, two versions of the ad campaign could be run—for example, 
one with those same characteristics plus “Interested in women”; the other with 
those characteristics plus “Interested in men.” Even if this user’s interests were 
not visible to her friends, if she had entered them in her profi le, they would be 
used for ad targeting. Thus, if the advertiser received a report that, for example, 
the “Interested in women” version of her ad had been displayed, the advertiser 
could infer the targeted individual’s private interests. Other attacks were possible 
too. “Using the microtargeting capability, one can estimate the frequency of a 
particular person’s Facebook usage, determine whether they have logged in to 
the site on a particular day, or infer the times of day during which a user tends 
to browse Facebook.”

Korolova (2011) quotes failed promises by Facebook executives, such as that 
Facebook doesn’t “share your personal information with services you don’t want” 
and doesn’t “give advertisers access to your personal information.” She notes: “We 
communicated our fi ndings to Facebook on July  13, 2010, and received a very 
prompt response. On July 20, 2010, Facebook launched a change to their advertising 
system that made the kind of attacks we describe much more diffi cult to implement 
in practice, even though, as we discuss, they remain possible in principle.”

This Facebook story helps demonstrate that if one seeks to use functions of 
data—be it via research fi ndings, policy decisions, or commercial services and prod-
ucts—the privacy of the individuals comprising the data may be at risk without an 
approach providing (provable) privacy guarantees.
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Differential Privacy

A common theme in the examples above has been the crucial role played by 
auxiliary information, that is, knowledge from sources outside the dataset under 
consideration. In the examples above, attackers consulted various outside sources 
not foreseen by the database owners, including public records such as voter rolls, 
complementary databases such as IMDB, or, simply, personal familiarity with an 
individual in the database. To identify individuals, the attackers then carried out a 
variant of a so-called “linkage attack”: they matched fi elds that overlap across the 
auxiliary data and the attacked database.

More generally, one may invite trouble when making specifi c assumptions 
regarding what information a potential attacker might have and how the attacker 
might use it. If such assumptions are ever violated—even in the future, as new 
technology and information become available—privacy may be compromised. One 
approach to addressing the auxiliary-information concern would be to seek to provide 
privacy guarantees free from such assumptions. The approach we discuss here, 
differential privacy, seeks to do just that. It emerged from work in computer science 
theory by Dinur and Nissim (2003), Dwork and Nissim (2004), and Dwork, McSherry, 
Nissim, and Smith (2006). Our discussion and examples draw on a number of surveys, 
including Dwork (2006), Dwork and Smith (2010), Dwork (2011b, a), and Dwork, 
McSherry, Nissim, and Smith (2011). These surveys additionally present historical 
aspects of the development of the differential privacy defi nition, more examples, 
and a much broader range of applications than we discuss here. Our working paper, 
Heffetz and Ligett (2013), contains slightly more technical detail than presented here 
as well as more references to recent work on differential privacy. We also recommend 
a recent popular article on differential privacy research by Klarreich (2012).

The Differential Privacy Defi nition
To fi x ideas, consider the released outcome of some function of a database: for 

example, the released number of Facebook users to whom an ad was displayed, or 
some published table of statistics in an empirical research paper, or even a released 
version of the entire database. Consider a potential participant in the database: 
for example, someone who considers joining Facebook, or someone who considers 
participating in a research study. Compare two possible scenarios: in one, this 
person joins and is added to the database; in the other, the person does not join 
and hence is not in the database.

Informally, differential privacy seeks to guarantee to the potential participant 
that, irrespective of the decision whether to participate, almost the same things can 
be learned from the released outcome—regardless of outside information, of the 
data already in the database, or of the participant’s own personal data. Differential 
privacy hence gives participants (and nonparticipants) in the database a form of 
plausible deniability: they could always deny that their data took specifi c values or 
even that they participated (or did not participate), and an observer would have 
almost no evidence either way.
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Here is an often-used example: one could conduct a differentially-private 
analysis that revealed a correlation between smoking and cancer, so long as that 
correlation depended only negligibly on the participation of any one  individual 
in the study. Revealing (that is, publishing) this correlation might allow observers 
to draw inferences about an individual smoker, and that person might then feel 
that his or her privacy has been harmed. But since essentially the same conclusions 
would have been drawn regardless of whether that smoker participated in the study, 
the differential privacy of that person has been respected.

In a more formal sense, consider pairs of databases that are identical except 
that one of the databases has one additional row (or record) over the other. We 
refer to such a pair as neighboring databases, and think of each row as corresponding 
to one  individual. Thus, two neighboring databases differ by only the participa-
tion of one  individual. Now consider some computation that is carried out on 
such databases, and consider the space of possible outcomes of the computation. 
A differentially-private computation (or function, or mechanism) selects its output 
using a degree of randomness, such that the probability of any given outcome is 
similar under any two neighboring databases.

How similar? A common differential privacy defi nition, ϵ-differential privacy 
(Dwork, McSherry, Nissim, and Smith 2006), requires that the probability of 
any given outcome under any two neighboring databases cannot differ by more 
than a multiplicative constant,  e  ϵ , where e is Euler’s number and the parameter ϵ 
is a positive number that quantifi es the amount of privacy.5 The smaller ϵ is, 
the stronger is the privacy guarantee, but the less useful is the computation’s 
output: in the limiting case of ϵ = 0, we would replace the word “similar” above 
with “identical” since in that limiting case,  e  ϵ  would equal 1, requiring that the 
differentially-private mechanism be indistinguishable on any two input databases. 
In other words, maximum differential privacy means useless published output. 
More generally, the defi nition makes precise an intuitive tradeoff between privacy 
and usefulness.

The output of a differentially-private mechanism is readily publishable. It 
could, for example, be a single statistic (or a collection of statistics) to which a 
suffi cient amount of random noise was added so that the inclusion of an addi-
tional record in, or exclusion of an existing record from, the database would have 

5 Here is a formal defi nition:
 A randomized function K provides ϵ-differential privacy if for every  ∈ Range(K ) and for all neigh-
boring databases D and D ′,
 Prob[ K(D) =  ] ≤  e  ϵ  · Prob[ K(D ′ ) =  ]
 for ϵ ≥ 0 and where the probability space in each case is over the randomness of K.
 Note that in particular, for any neighboring pair (D, D ′ ), the defi nition must hold with the larger quan-
tity (that is, max{ Prob[ K(D) =   ], Prob[K(D ′ ) =   ]}) on the left, constraining it to be larger by at most a 
multiplicative  e  ϵ . There are other variants on this defi nition, which we do not emphasize here. A common 
generalization of differential privacy allows an additive δ difference in the probabilities, in addition to the 
mulitiplicative difference  e  ϵ  (for example, Dwork, Kenthapadi, McSherry, Mironov, and Naor 2006). Such 
generalization provides a weaker privacy guarantee, but may allow for more accurate outcomes.
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almost no effect on the distribution of the statistic (or statistics). Or it could be 
an entire synthetic database—a database consisting of artifi cial records, created 
with a degree of randomness from the original records in a way that preserves 
certain statistical properties of the original database but does not give away the 
inclusion of any individual record. The following subsections will have more to 
say about ways of using randomness and how much randomness is necessary. As 
discussed above, notice again that when we write here “would have almost no 
effect” and “does not give away” we imply that ϵ is small. How small should it be? 
The defi nition of differential privacy does not prescribe an answer to this norma-
tive question, a point we return to below.

Observations Regarding the Defi nition
The concept of differential privacy readily extends to provide a privacy guar-

antee to a group of individuals of a certain size: an ϵ-differentially-private mechanism 
is kϵ-differentially private from the point of view of a group of k individuals (or one 
individual whose data comprise k rows in the database). Intuitively, the inclusion 
in or exclusion from a database of a group of rows could have larger cumulative 
effect on outcomes of computations, weakening the privacy guarantee. In the 
smoking-and-cancer example above, it is more diffi cult to guarantee that adding an 
entire group of people to the study—say, all the residents of a specifi c city—would 
have almost no effect on outcomes.

The differential privacy defi nition also immediately yields an elegant com-
position property: running ℓ ϵ- differentially-private mechanisms—for example, 
publishing ℓ statistics based on a database—gives a guarantee of ℓϵ- differential pri-
vacy.6 Equivalently, one may split a fi xed total “privacy budget” of ϵ across a set of 
desired computations.

This composition property is particularly important in the context of potential 
real-world applications—including academic research and public- and private-sector 
implementations—where individuals may participate in more than one database, 
and where on each database typically more than one analysis is conducted. Differ-
ential privacy hence provides a tool for understanding the cumulative privacy harm 
incurred by an individual whose data appear in multiple databases, potentially used 
by different entities for different purposes and at different points in time. One could 
discuss assessments of individuals’ cumulative, lifelong privacy loss, and use them as 
an input into the discussion of how small ϵ should be in each specifi c computa-
tion. Moreover, some socially desired cap on such cumulative privacy loss could 
be thought of as an individual’s lifetime privacy budget. That budget is then to be 
carefully allocated, and prudently spent, across computations over one’s lifetime to 
guarantee a desired amount of lifetime privacy.

Finally, it can be shown that differential privacy guarantees hold up under 
post-processing of their outputs: if one conducts an ϵ-differentially-private 

6 More generally, running any ℓ differentially-private mechanisms with guarantees  ϵ 1 , … , ϵ  ℓ  gives
 (  ∑  i=1  

ℓ    ϵ i  ) -differential privacy.
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computation, one is then free to perform any subsequent computation on the 
output of that computation, and the result will still be ϵ-differentially private. In 
other words, once one has produced differentially-private statistics on a dataset, 
those statistics can be made public for all eternity, without concern that at some 
later date a clever hacker will fi nd some new privacy-revealing weakness.

From a Bayesian point of view, differential privacy can be given the following 
interpretation: an observer with access to the output of a differentially-private 
function should draw almost the same conclusions whether or not one individual’s 
data are included in the analyzed database, regardless of the observer’s prior. 
This interpretation highlights that differential privacy is a property of the func-
tion (the mapping from databases into outcomes), not of the output (a particular 
outcome). Kasiviswanathan and Smith (2008) credit Cynthia Dwork and Frank 
McSherry with the fi rst formulation of this interpretation, which can be formalized 
and proven equivalent to differential privacy.

The Bayesian “observer” may of course refer to anyone with access to the 
output of the function, including malicious attackers, (legitimate) advertisers on 
Facebook, or the readers of a research paper that reports some statistic. Notice 
that this Bayesian interpretation does not rule out performing analyses and 
reporting outcomes that vastly alter the observer’s posterior view of the world, so 
long as the outcomes are not very sensitive to the presence or absence of any one 
individual in the original database. Our example above, regarding a differentially-
private analysis that revealed a correlation between smoking and cancer, illustrates 
this point.

From Defi nition to Application: Noise and Sensitivity
With the concept of differential privacy in hand, consider the computation 

(and subsequent release) of the mean income of individuals in a database. While the 
mean might seem like a fairly innocuous statistic, all statistics reveal something about 
the data, and in certain worst-case situations, the mean might be quite revealing. 
For example, if the mean salary in a certain economics department prior to hiring 
a new faculty member is known to an observer (for instance, due to a previous 
release), then releasing the new mean after the hire reveals the new hire’s salary. 
This is a variant of the so-called “differencing attack.”

A simple technique for guaranteeing differential privacy is to add randomly 
generated noise to the true mean prior to its release. How much noise? Since 
differential privacy is a worst-case guarantee over all possible pairs of neighboring 
databases and over all possible outcomes, if the distribution of incomes is not 
a priori bounded, the noise would have to be unboundedly large (to guarantee that 
even the addition of an extreme outlier to the database would have little effect on 
the differentially-private statistic). With a limit on the range of incomes, however, 
one could add a limited amount of noise to the true mean in order to guarantee 
differential privacy.

More formally, when a function that we wish to compute on a database returns 
a real number, we say that the sensitivity of that function, denoted ∆ f, is the largest 
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possible difference (in absolute value) between the two outputs one might get when 
applying that function to two neighboring databases.7 The defi nition makes it clear 
that sensitivity is a property of the function, given a universe of possible databases, 
and is independent of the actual input database. Intuitively, this maximum differ-
ence between the values that the function could take on any two  neighboring 
databases must be hidden in order to preserve differential privacy. We next focus 
on a technique that hides this maximum difference by adding noise, in the context 
of a concrete example.

A Single-Statistic Example: Mean Salary
To illustrate some of the delicate issues involved in actually carrying out a 

differentially-private computation, consider the release of mean salary among (all 
or some of) the faculty in an economics department. For concreteness, consider the 
following scenario: each faculty member is asked to voluntarily and confi dentially 
agree to have their individual salary included in some database; statistics from the 
database are to be released in a differentially-private manner.

Notice that the details of this scenario, including details of the differentially-private 
mechanism to be used, can be publicly announced. What one aims to hide is only the 
confi dential participation decision by any individual faculty. Our example will illustrate 
that this individual decision is easier to hide the larger the database is, the fewer statis-
tics are to be published, and the less sensitive these statistics are given the considered 
universe of possible databases.

Dwork, McSherry, Nissim, and Smith (2006) show that one way to get an 
ϵ-differentially-private release of a statistic is to add “Laplace noise” to the (true) 
statistic prior to its release: that is, the noise is drawn from a Laplace distribution 
with mean equal to zero and standard deviation =  √ _ 2   ∆ f /ϵ, where ∆ f is the sensi-
tivity of the statistic—that is, the maximum difference in the statistic between any 
two neighboring databases—and ϵ is the parameter that quantifi es the level of 
privacy we choose to guarantee.8

To apply this technique one therefore needs, fi rst, to choose a value for ϵ (the 
smaller it is, the stronger is the privacy guarantee), and second, to calculate ∆ f. 
Remember that because these quantities do not depend on the underlying data, 
they are not in themselves private.

Choosing a value for ϵ: Recall that ϵ quantifi es the maximum multiplicative 
difference possible between a differentially-private computation’s outcome prob-
abilities across two neighboring databases. In choosing a value for ϵ, one therefore 
chooses the maximum such difference that one is willing to allow under the differ-
ential privacy guarantee. But what should this maximum difference be? For the 

7 Formally, the sensitivity of a function f is ∆ f =  max  D,  D   ′   | f (D) − f (D ′ ) |, for (D, D ′ ) neighboring 
databases.
8 With scale parameter b = ∆ f /ϵ, the probability density function of this distribution is   1 _ 2b    e 

−  | x | _ 
b
    and its 

standard deviation is  √ _ 2   b. This distribution is a natural choice because its exponential form satisfi es the 
multiplicative  e   ϵ  constraint in the differential privacy defi nition.
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most part, the differential privacy literature is silent on this question. Developing 
the reasoning and intuition necessary for determining a socially desired value 
may take time. Concrete proposals may eventually emerge from a combination of 
philosophical and ethical inquiry, and social, political, and legislative processes, 
and could depend on context; further research is clearly needed.9 For illustrative 
purposes only, in our mean salary example we will consider the values ϵ = 0.1 
and ϵ = 1.

Calculating ∆ f: As mentioned above, to yield practical results our technique 
requires ∆ f to be bounded. Our example involves salary rather than total income, 
because salary is bounded from below (in the worst case, at zero). One still needs 
an upper bound, which cannot be naively calculated from the data, but should 
be a property of the known universe of possible salaries. For simplicity, we assume 
that it is known to be some  _ y  . With these bounds, and with mean salary as our func-
tion of interest, the absolute value of the difference between the function applied 
to two neighboring databases will be less than or equal to the highest possible 
salary divided by the number (denoted by n) of individuals in the larger database: 
| f (D) − f (D ′ )| ≤  _ y  /n, for any two neighboring databases (D, D ′ ).

Since the number of faculty members participating in the database is not 
publicly known, the universe of possible databases includes the case n = 1, and 
therefore ∆ f =  _ y  . 10 With such high sensitivity, a naive application of the Laplace 
noise technique yields a uselessly uninformative outcome at any n: the noise added 
to the true mean has standard deviation  √ _ 2    _ y  /ϵ, which, even with ϵ = 1, is larger 
than the upper bound on salaries.

An easy modifi cation of the technique, however, yields noise that shrinks with 
n. The idea is to think of the mean as the function sum/n, that is, as a function 
of two statistics—the sum of salaries, and the sample size n—to be calculated and 
released in a differentially-private manner. One then divides the privacy budget 
ϵ between the two  statistics:  ϵ sum  +  ϵ n  = ϵ (recall that the composition property 
allows such a division). The sensitivity of the sum of salaries is  _ y   because the 
maximum difference between the sum of salaries across two databases that differ 
only in the inclusion versus exclusion of one record is the upper bound on one 
additional salary. The sensitivity of n is 1, because by the defi nition of neighboring 

9 As Dwork et al. (2011) note in a defense of differential privacy:

Yes, this research is incomplete. Yes, theorems of the following form seem frighteningly restrictive:

If an individual participates in 10,000 adversarially chosen databases, and if we wish to 
ensure that her cumulative privacy loss will, with probability at least 1 −  e −32 , be bounded by  
e  1 , then it is suffi cient that each of these databases will be ϵ = 1/801- differentially private.

But how else can we fi nd a starting point for understanding how to relax our worst-case adversary 
protection? How else can we measure the effect of doing so? And what other technology permits 
one to prove such a claim?

10 For simplicity (and conservativeness), we defi ne mean salary in a database with 0 individuals to be at 
the lower bound 0.
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databases, the difference between the number of records across any two neigh-
boring databases is 1. The noise added to the two statistics would therefore have 
standard deviations  √ _ 2    _ y  / ϵ sum  and  √ _ 2  / ϵ n  , respectively. Because the two statistics 
increase with n, the noise-to-true-statistic ratio of each vanishes asymptotically. 
With ϵ = 1 and a favorable setting—a large department with high rate of volun-
tary participation in the database, and with mean salary not much below  _ y   —the 
differentially-private release may convey some usable information about the true 
mean; but generally, the promise of the approach is more apparent on bigger data.

For illustration, consider ϵ = 1, mean salary  _ y   (this is the unrealistically favor-
able case of all salaries in the department equal, at the upper limit), and n = 30. 
Then the standard deviation on the noise added by the Laplace technique would be 
 (  √ _ 2  /0.5 ) /30 = 9.4 percent of each of the two (true) statistics, assuming for 
simplicity we divide the privacy budget equally between the two statistics.

For comparison, consider mean salary among the American Economic Associa-
tion (AEA) membership in 2012, reported at 18,061 members (Rousseau 2013). 
Pick a tenfold stronger privacy guarantee, that is, ϵ = 0.1, and assume a more real-
istic relation between the upper bound and the true mean, say, mean salary =   _ y  /10. 
Assuming that all members volunteer to participate in the database, the much 
larger n means that in spite of these signifi cantly more conservative conditions, the 
standard deviation on the noise added by the Laplace technique would be a much 
more tolerable 1.6 percent of the true sum of salaries and 0.16 percent of the true n 
(that is, a standard deviation of 28 members), if the privacy budget is again divided 
equally—rather than optimally—between the two statistics. Of course, things look 
still better with still bigger data and cleverer techniques.

Mean Salary Revisited: When the Database Size is Known
Dwork (2011a) suggests that “[s]ometimes, for example, in the census, an 

individual’s participation is known, so hiding presence or absence makes no sense; 
instead we wish to hide the values in an individual’s row.” Our examples above 
could be modifi ed to match such settings. Instead of a scenario where each faculty 
member is asked to voluntarily join a database, consider a different scenario where 
some administrative database with everyone’s salaries is already known to exist. 
As above, statistics from the database are to be released in a differentially-private 
manner. Under this modifi ed scenario, the databases from our examples above 
are now known to include all the faculty in an economics department and all 
AEA members.

In such settings, where participation is publicly known, it may make sense to 
modify our above defi nition of neighboring databases, from pairs “that are identical 
except that one of the databases has one additional row,” to pairs of known size 
n, that differ in the content of exactly one row. In this form, differential privacy 
guarantees participants that if their true salary  y were replaced with some fake 
salary y′ ∈ [ 0,  _ y   ], the probability of any given outcome would not change by much. 
With this modifi cation, differentially-private release of mean salary requires only 
the sum of salaries to be computed and released in a differentially-private manner. 
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Historically, this alternate defi nition (with databases of fi xed and publicly 
known n) was used in the fi rst papers that sparked the differential privacy litera-
ture, and it is still used in much of the work on differential privacy and statistics—a 
body of work that has grown quickly over the past few years. Work in this area has 
repeatedly established the feasibility of achieving common statistical goals while 
maintaining differential privacy. Differentially-private versions have been developed 
for large classes of estimators—including those used routinely by empirical econo-
mists—often with little effective cost in terms of accuracy of the released results.11

Multiple Statistics
Of course, researchers wish to publish more than one statistic per database. In 

our example above, the privacy budget ϵ was divided between two statistics, sum and 
n, and each was then independently computed in a differential-privacy-preserving 
way. An alternative approach is to compute the two (or more) statistics jointly, which 
in some cases may signifi cantly reduce the amount of added noise, as demonstrated 
by the case of histograms (Dwork, McSherry, Nissim, and Smith 2006).

Consider the release of a frequency histogram of salaries in some database. 
Treating each bin as a separate statistic (for example, “the count of rows with salary 
$0–10,000” is one statistic) would require dividing the privacy budget ϵ between the 
bins. The sensitivity (that is, ∆ f ) of each such bin statistic is 1. It turns out that a 
generalized sensitivity concept applied jointly to the entire histogram is also 1, since 
adding an individual to a database always adds 1 to the count of exactly one of the 
bins and 0 to all others. In this example, calculating all the bins of the histogram 
jointly reduces the added noise because it saves the need to fi rst divide the privacy 
budget between the statistics—a division whose cost in added noise increases with 
the number of bins. More generally, consider the maximum possible effect on a 
statistic of adding one individual to the database; if such a worst-case effect cannot 
occur on each of a group of statistics at the same time, considering them jointly may 
improve results.

One of the main focuses of research in differential privacy in recent years has 
been to develop algorithms that can handle very large numbers of queries jointly with 
far less noise than simple noise addition would permit. This large literature, which 
begins with Blum, Ligett, and Roth (2013) and continues with Hardt and Rothblum 
(2010) and Hardt, Ligett, and McSherry (2012), develops techniques for generating 
“synthetic data”—a set of valid database rows—that approximate the correct answers to 

11 Here we provide a few examples; see Heffetz and Ligett (2013) for a fuller reference list. Dwork and 
Lei (2009) demonstrate differentially-private algorithms for interquartile distance, median, and linear 
regression. Lei (2011) and Nekipelov and Yakovlev (2011) study differentially-private M-estimators. 
Smith (2008, 2011) fi nds that for almost any estimator that is asymptotically normal on independent and 
identically distributed samples from the underlying distribution (including linear regression, logistic 
regression, and parametric maximum likelihood estimators, under regularity conditions), there are 
differentially-private versions with asymptotically no additional perturbation. Along with these and other 
theoretical papers, a number of papers empirically investigate the performance of differentially-private 
estimators; useful starting points include Vu and Slavkovic (2009), Chaudhuri, Monteleoni and Sarwate 
(2011), and Abowd, Schneider and Vilhuber (2013).
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all of a large, fi xed set of queries. These techniques go far beyond just perturbing the 
data. Using ideas from geometry and computational learning theory, they generate 
synthetic data consisting of artifi cial records that cannot be connected with a single or 
small number of records in the original data. These approaches have started to show 
practicality, in the form of simple implementations that achieve good accuracy when 
tested on common statistical tasks using standard benchmark data (Hardt, Ligett and 
McSherry 2012), but much remains to be done.12

From Intuitions to Provable Guarantees

What insights can the differential privacy literature offer regarding the 
cautionary tales above? What tools could it provide for researchers working with 
data? We offer some thoughts, and highlight how different approaches respond 
differently to the inherent, unavoidable tradeoff between privacy and accuracy. 
We then discuss some of the limitations, as well as additional applications, of 
differential privacy.

Lessons and Refl ections
In the Massachusetts Group Insurance Commission case—and, more generally, 

regarding the “anonymization” of complex datasets—lessons from differential privacy 
suggest considering two alternatives. First, one could release a differentially-private, 
synthetic (that is, artifi cial) version of the original database, after removing or coars-
ening complex fi elds such as text (which, without coarsening, would have made 
the data too high-dimensional for a synthetic version to be feasible in practice). 
The synthetic data would only be useful for a predetermined (though potentially 
quite large) set of statistics.13 Second, one could withhold the full data but provide a 
differentially-private interface to allow researchers (or possibly the general public) 
to issue queries against the database.

Both approaches—providing a sanitized database, and providing sanitized 
answers to individual queries—face the inescapable tradeoff between privacy and 
usefulness (or accuracy). To achieve privacy, they limit usefulness in different ways: 
while the fi rst approach limits in advance the type of queries (and hence of analysis) 

12 Another growing literature considers large sets of queries of a particular type, and aims to get a better 
understanding of the privacy–accuracy tradeoffs for a specifi c combined task. Beginning with Barak et al. 
(2007), one application that has received substantial attention is contingency tables, which are computed 
from sets of k-way marginal queries; see Heffetz and Ligett (2013) for references to more recent work.
13 Kinney et al. (2011) provide evidence of the promise of synthetic data, describing the generation of 
an initial version of the SynLBD, a synthetic version of the US Census Bureau’s Longitudinal Business 
Database (https://www.census.gov/ces/dataproducts/synlbd/). Their synthetic database is designed 
to preserve aggregate means and correlations from the underlying, confi dential data. While their 
algorithm for generating synthetic data is not explicitly designed to preserve any particular level of differ-
ential privacy, they present an interesting illustrative assessment—inspired by differential privacy—of 
privacy risk. See Machanavajjhala et al. (2008) for an earlier exploration of the challenges of generating 
privacy-preserving synthetic data from other Census datasets.
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possible, the second maintains fl exibility but might more severely limit the overall 
number of queries, since the system has to manage a privacy budget dynamically 
(and hence potentially less effi ciently) to answer arbitrary queries as they arrive and 
would eventually run out of its ϵ privacy budget and then would have to refuse new 
queries. This idea of an overall limit—a privacy budget that places a quantifi able 
constraint on any approach—is a useful metaphor that highlights one of the costs 
of preserving privacy: it imposes fundamental limits on how much information can 
be revealed about the data.

In the case of the AOL debacle, the data to be released were so high-dimensional 
(the space of rows being all possible search histories) that they clearly could not be 
handled with differential privacy without some initial dimension reduction. This 
point in itself is worth observing—free text and other high-dimensional data (for 
example, genetic information) are potentially extraordinarily revealing, and deserve 
careful attention. Korolova, Kenthapadi, Mishra, and Ntoulas (2009), in response to 
AOL’s data release, propose releasing an alternate data structure called a query click 
graph, and demonstrate on real search log data that a differentially-private query 
click graph can be used to perform some research tasks that one might typically 
run on search logs.14 As the authors note, it remains to be seen how broadly useful 
such sanitized data are, but such fi ndings “offer a glimmer of hope” on reconciling 
research usability with privacy concerns.

Regarding the Netfl ix challenge, the manner in which it was carried out—
releasing a large, very high-dimensional dataset—is diffi cult to implement in a 
differentially-private way. However, the goals of the challenge—namely, producing 
recommendations from collective user behavior—could be achievable while guar-
anteeing differential privacy. To explore this possibility, McSherry and Mironov 
(2009) evaluate several of the algorithmic approaches used in the challenge, 
showing that they could have been implemented in a differentially-private manner 
(via privacy-preserving queries issued against the database) without signifi cant 
effect on their accuracy.

The Facebook goal—giving advertisers a count of the number of times their ad 
was shown—at fi rst sounds as if it might be well-suited to differential privacy: one 
could simply add an appropriate level of noise to the true count. However, charging 
advertisers based on noisy counts may be considered objectionable, and regardless, 
privacy would then degrade as the number of ad campaigns increased (or, alterna-
tively, Facebook would have to discontinue the service once they ran out of a certain 
ϵ budget to which they had committed). Even if we assume that advertisers do not 
share the statistics Facebook reports to them (and so perhaps each advertiser can be 
apportioned a separate privacy budget rather than sharing a single budget among 

14 The differentially-private query click graph the authors propose to publish is a noisy version of a 
“graph where the vertices correspond to both queries and URLs and there is an edge from a query to 
a URL with weight equal to the number of users who click on that URL given they posed the query. Each 
query node is labeled by the number of times this query was posed in the log. Similarly, there is an edge 
from one query to another query with weight equal to the number of users who posed one query and 
reformulated to another.”
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them all), large advertisers likely run so many campaigns that the noise necessary 
in order to ensure any reasonable level of privacy would swamp any signal in the 
data. Korolova (2011) suggests that an approach like differential privacy would 
provide the most robust starting point for privately addressing Facebook’s goal, 
and discusses these and other challenges that leave the targeted-ads application an 
intriguing open problem.

More generally, what tools and other thoughts could differential privacy poten-
tially offer to researchers who work with data?

While no standardized implementations yet exist, and while conventions 
(for example regarding setting ϵ) have not yet been established, a rich set of 
theoretical results already provides the foundations for a useful toolbox for the 
data-based researcher.

If one would like to publish a single statistic (or a small set of statistics), 
differentially-private estimator versions might already exist. As discussed above, the 
accuracy cost imposed by the added noise may be negligible when the sample size 
n is suffi ciently large.

Regardless of whether the statistic of interest has received attention in the 
differential privacy literature, the study of differential privacy suggests that it may 
be helpful to understand the sensitivity of the statistic to changes in one person’s 
information—how much can varying one entry in the database affect the statistic? 
Such understanding not only helps assess how much noise one could add to 
achieve differential privacy in the simplest manner; it is also helpful for getting 
an intuitive understanding of how and why a statistic might be revealing. There 
are also differentially-private techniques that can provide good accuracy even on 
high-sensitivity statistics, so long as the statistics are “well-behaved” on the data of 
interest (Nissim, Raskhodnikova, and Smith 2007; Dwork and Lei 2009). Finally, 
if one wishes to publish a large set of statistics or produce sanitized data, as we 
discussed, general purpose techniques for doing so already exist, but it is possible 
that a researcher’s particular properties of interest would be even better served by a 
specialized differentially-private mechanism.

The centrality of the notion of sensitivity to the ongoing research on differ-
ential privacy highlights an old truth from a new perspective: it underscores the 
importance of thinking about the robustness of the statistics we report. If reporting 
a statistic while preserving privacy requires introducing an unacceptable level of 
randomness, this may indicate that one’s dataset is too small for one’s desired levels 
of privacy and accuracy, but it may also suggest that worst-case scenarios exist under 
which the statistic is simply not robust-—that is, it may be quite sensitive to potential 
individual outliers.

Finally, the concept of differential privacy offers one way to quantify the often 
loosely used notions of privacy and anonymity. Researchers may fi nd such quan-
tifi cation helpful in thinking about whether study participants should be given a 
different, more qualifi ed, promise of privacy/anonymity than is typically given—
especially in settings where implementing a specifi c guarantee (not necessarily the 
one offered by differential privacy) is not practical.
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Limitations
Like any other rigorous approach, the differential privacy approach makes some 

assumptions that may be questioned. For example, it assumes that an individual’s 
private data are conveniently represented as a row in a database (an assumption 
violated by, for example, social network data), and it implicitly assumes that a partic-
ular defi nition—involving a bound on the ratio of outcome probabilities—captures 
what we mean by privacy.

Strong privacy guarantees necessarily obscure information. The intentional 
introduction of randomness into published outcomes may require adjustments 
to specifi c implementations of scientifi c replication. More generally, for some 
applications the very idea of deliberately introducing randomness is problematic: 
preventable mistakes such as allocating the wrong resources to the wrong groups or 
making the wrong policy decisions could have grave consequences.

As hinted above, a potential limitation of differentially-private mechanisms 
producing synthetic data is that they require the data analyst to specify the query set 
in advance. In many research settings, one may not know in advance exactly which 
statistics one wishes to compute or what properties of a dataset must be preserved 
in order for the data to be useful. There is a natural tension between an analyst’s 
desire to “look at the data” before deciding what to do with them and a privacy 
researcher’s desire that all computations that touch the original data be made 
formal and privacy-preserving.

As a practical response to this limitation, rather than attempting to defi ne the 
query set a priori, one could consider using some of the privacy budget for interactive 
queries where the analyst poses queries one at a time and receives privacy-preserving 
answers, and could then base the choice of future queries on the answers previously 
received. The analyst thus establishes via this sequence of interactive queries what 
properties of the original database to preserve in the sanitized version, and can then 
use the rest of the privacy budget to produce sanitized data.

More generally, with the growth of big data, the “look at the data” approach 
is destined to change: in practical terms, “looking” at enormous datasets means 
running analyses on them. As soon as “looking at the data” has a technical meaning, 
one can try to enable it in a privacy-preserving manner.

Finally, for particular applications, differentially-private mechanisms may not 
yet have been developed, or the existing technology may not enable a satisfying 
privacy–accuracy tradeoff. Such limitations may merely suggest that more research 
is needed. Even when a satisfying privacy–accuracy tradeoff is formally proved 
impossible, in many cases such impossibility results are not specifi c to differential 
privacy, but rather refl ect that certain tasks are inherently revealing and hence may 
be fundamentally incompatible with privacy.

Differential Privacy and Mechanism Design
The last few years have seen a growth of interest in a number of topics at the 

intersection of differential privacy and economics, in particular, privacy and mecha-
nism design; see Pai and Roth (2013) for a survey. Some of the key questions under 
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consideration include how one might incorporate privacy considerations into utility 
functions and how one might model the value of privacy. Work in this area includes 
Ghosh and Roth (2011), Nissim, Orlandi, and Smorodinsky (2012), Fleischer and 
Lyu (2012), Roth and Schoenebeck (2012), Ligett and Roth (2012), Xiao (2013), 
Chen et al. (2013), and Ghosh and Ligett (2013).

From a mechanism design point of view, the differential privacy guarantee—
that a participant’s inclusion or removal from the database would have almost no 
effect on the outcome—could be viewed as a valuable guarantee even in the absence 
of privacy concerns. In particular, consider settings where participants in a database 
can misrepresent their individual data, and have preferences over the possible 
outcomes of a function to be computed from the data. A differentially-private compu-
tation implies that such participants have only limited incentive to lie, because lying 
would have only a limited effect on the outcome. McSherry and Talwar (2007) were 
the fi rst to observe that differential privacy implies asymptotic (or approximate) 
“strategyproofness” (or truthfulness). Of course, under differential privacy, not only 
do individuals have almost no incentive to lie; they also have almost no incentive to 
tell the truth (Nissim, Smorodinsky and Tennenholtz 2012; Xiao, 2013); however, 
a small psychological cost of lying could strictly incentivize truth-telling.

This implication of approximate truthfulness may be of particular interest 
to researchers who wish to gather survey data in settings where participation is 
voluntary and the accuracy of responses cannot be easily verifi ed. More generally, 
the asymptotic strategyproofness implied by differential privacy inherits some of 
the latter’s useful additional properties. For example, because of the way differ-
ential privacy extends to groups of k individuals, this strategyproofness extends 
to the case of k colluding individuals (a collusion resistance that deteriorates with 
the coalition size k). The strategyproofness also holds under repeated applica-
tion of the mechanism (again, with a deterioration as the number of repetitions 
rises). Finally, this asymptotic truthfulness has inspired further work on privacy-
preserving mechanism design (Huang and Kannan 2012; Kearns, Pai, Roth, and 
Ullman 2014) and has enabled differential privacy to be used as a tool in the 
design of truly strategyproof mechanisms (for example, Nissim, Smorodinsky, 
and Tennenholtz 2012).

Concluding Thoughts

Privacy concerns in the face of unprecedented access to big data are nothing 
new. More than 35 years ago, Dalenius (1977) was discussing “the proliferation of 
computerized information system[s]” and “the present era of public concern about 
‘invasion of privacy.’” But as big data get bigger, so do the concerns. Greely (2007) 
discusses genomic databases, concluding:

The size, the cost, the breadth, the desired broad researcher access, and the 
likely high public profi le of genomic databases will make these issues especially 
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important to them. Dealing with these issues will be both intellectually and 
politically diffi cult, time-consuming, inconvenient, and possibly expensive. 
But it is not a solution to say that “anonymity” means only “not terribly easy 
to identify,” . . . or that “informed consent” is satisfi ed by largely ignorant 
blanket permission.

Replacing “genomic databases” with “big data” in general, our overall conclusion 
may be similar.

The stories in the fi rst part of this paper demonstrate that relying on intuition 
when attempting to protect subject privacy may not be enough. Moreover, privacy 
failures may occur even when the raw data are never publicly released and only 
some seemingly innocuous function of the data, such as a statistic, is published.

The differential privacy literature provides a framework for thinking more 
precisely about privacy–accuracy tradeoffs. With computer scientists using phrases 
such as “the amount of privacy loss” and “the privacy budget,” the time seems ripe 
for more economists to join the conversation. Is privacy a term in the utility function 
that can in principle be compared against the utility from access to accurate data? 
Should individuals be entitled to privacy—or to a certain lifelong privacy budget—
as a basic right, or as a property right? Should a certain privacy budget be allocated 
across interested users of publicly owned data, like Census data, and if so, how? If a 
budget were allocated to individuals, should fungible, transferable ϵ be allowed to 
be sold in markets from private individuals to potential data users, and if so, what 
would its price be?

When big data means large n, an increasing number of common computations 
can be achieved in a differentially-private manner with little cost to precision. It 
is not inconceivable that within a few years, many of the computations that have 
been—and those that are yet to be—proven achievable in theory will be applied 
in practice. Dwork and Smith (2010) write that they “would like to see a library of 
differentially-private versions of the algorithms in R and SAS.” In a similar spirit, 
we would be happy to have a differentially-private option in estimation commands 
in STATA. But ready-to-use, commercial-grade applications will not be developed 
without suffi cient demand from potential users. We hope that the incorporation 
of privacy considerations into the vocabulary of empirical researchers will help 
raise demand, and stimulate further discussion and research—including, we hope, 
regarding additional approaches to privacy.

Until such applications are available, it might be wise to pause and reconsider 
researchers’ promises and, more generally, obligations to subjects. When researchers 
(and Institutional Review Boards!) are confi dent that the data pose only negligible 
privacy risks—as in the case of some innocuous small surveys and lab experiments—
it may be preferable to replace promises of complete anonymity with promises for 
“not terribly easy” identifi cation or, indeed, with no promises at all. In particular, 
researchers could explicitly inform subjects that a determined attacker may be able 
to identify them in posted data, or even learn things about them merely by looking 
at the empirical results of a research paper. We caution against taking the naive 
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alternate route of simply refraining from making seemingly harmless data publicly 
available; freedom of information, access to data, transparency, and scientifi c repli-
cation are all dear to us.15 Of course, the tradeoffs, and in particular the question of 
what privacy risks are negligible and what data are harmless, should be considered 
and discussed; a useful question to ask ourselves may resemble the old “New York 
Times test”: Would our subjects mind if their data were identifi ed and published in 
the New York Times?

■ For useful comments on an early draft, we thank Dan Benjamin, Avrim Blum, Kamalika 
Chaudhuri, Hank Greely, Aleksandra Korolova, Frank McSherry, Ilya Mironov, Denis 
Nekipelov, Kobbi Nissim, Ted O’Donoghue, Grant Schoenebeck, Moses Shayo, Adam 
Smith, Latanya Sweeney, Kunal Talwar, and Jonathan Ullman. We are also grateful to the 
editors—David Autor, Chang-Tai Hsieh, Ulrike Malmendier, and Timothy Taylor—for their 
encouragement and comments. Ligett’s work was supported in part by an NSF CAREER award 
(CNS-1254169), the US–Israel Binational Science Foundation (grant 2012348), the Charles 
Lee Powell Foundation, a Google Faculty Research Award, and a Microsoft Faculty Fellowship.

References

15 Flood, Katz, Ong, and Smith (2013) provide a comprehensive discussion of such a transparency–
confi dentiality tradeoff in a context that is very different from ours, yet of great interest to economists—
that of fi nancial supervision and regulation.

Abowd, John M., Matthew J. Schneider, and Lars 
Vilhuber. 2013. “Differential Privacy Applications 
to Bayesian and Linear Mixed Model Estimation.” 
Journal of Privacy and Confi dentiality 5(1).

Barak, Boaz, Kamalika Chaudhuri, Cynthia 
Dwork, Satyen Kale, Frank McSherry, and Kunal 
Talwar. 2007. “Privacy, Accuracy, and Consistency 
Too: A Holistic Solution to Contingency Table 
Release.” In PODS ’07: Proceedings of the Twenty-Sixth 
ACM SIGMOD-SIGACT-SIGART Symposium on 
Principles of Database Systems, pp.  273–82. ACM 
Digital Library.

Barbaro, Michael, and Tom Zeller. 2006. “A 
Face Is Exposed for AOL Searcher No. 4417749.” 
New York Times, August 9. http://www.nytimes
.com/2006/08/09/technology/09aol.html.

Barth-Jones, Daniel C. 2012. “The 
‘Re-Identifi cation’ of Governor William Weld’s 

Medical Information: A Critical Re-Examination 
of Health Data Identifi cation Risks and Privacy 
Protections, Then and Now.” Available at SSRN: 
http://ssrn.com/abstract=2076397.

Blum, Avrim, Katrina Ligett, and Aaron Roth. 
2013. “A Learning Theory Approach to Nonin-
teractive Database Privacy.” Journal of the ACM 
60(2): Article 12.

Chaudhuri, Kamalika, Claire Monteleoni, and 
Anand D. Sarwate. 2011. “Differentially Private 
Empirical Risk Minimization.” Journal of Machine 
Learning Research 12(March): 1069 –1109.

Chen, Yiling, Stephen Chong, Ian A. Kash, 
Tal Moran, and Salil P. Vadhan. 2013. “Truthful 
Mechanisms for Agents that Value Privacy.” In 
EC  ’13: Proceedings of Fourteenth ACM Conference 
on Electronic Commerce, pp.  215 –32. ACM Digital 
Library.



Ori Heffetz and Katrina Ligett     97

Dalenius, Tore. 1977. “Towards a Methodology 
for Statistical Disclosure Control.” Statistisk tidskrift, 
15: 429 – 44.

Dinur, Irit, and Kobbi Nissim. 2003. “Revealing 
Information While Preserving Privacy.” In PODS ’03: 
Proceedings of the Twenty-second ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database 
Systems, pp. 202–210. ACM Digital Library.

Dwork, Cynthia. 2006. “Differential Privacy.” 
ICALP ’06: Proceedings of the 33rd International 
Conference on Automata, Languages and Program-
ming, pp. 1–12. ACM Digital Library.

Dwork, Cynthia. 2011a. “A Firm Foundation for 
Private Data Analysis.” Communications of the ACM 
54(1): 86 – 95.

Dwork, Cynthia. 2011b. “The Promise of 
Differential Privacy: A Tutorial on Algorithmic 
Techniques.” In FOCS ’11: Proceedings of the 52nd 
Annual IEEE Symposium on Foundations of Computer 
Science, pp. 1–2. ACM Digital Library.

Dwork, Cynthia, and Jing Lei. 2009. “Differential 
Privacy and Robust Statistics.” In STOC ’09: Procced-
ings of the Forty-fi rst Annual ACM Symposium on Theory 
of Computing, pp. 371–80. ACM Digital Library.

Dwork, Cynthia, and Kobbi Nissim. 2004. 
“Privacy-Preserving Datamining on Vertically 
Partitioned Databases.” In Advances in Cryptology—
CRYPTO 2004, 24th Annual International Cryptology 
Conference, pp. 528–44.

Dwork, Cynthia, Krishnaram Kenthapadi, Frank 
McSherry, Ilya Mironov, and Moni Naor. 2006. 
“Our Data, Ourselves: Privacy via Distributed Noise 
Generation.” In EUROCRYTO ’06: Proceedings 
of the 24th Annual International Conference on the 
Theory and Applications of Cryptographic Techniques, 
pp. 486–503. ACM Digital Library.

Dwork, Cynthia, Frank McSherry, Kobbi 
Nissim, and Adam Smith. 2006. “Calibrating Noise 
to Sensitivity in Private Data Analysis.” In TTC ’06: 
Proceedings of the Third Conference on Theory of Cryp-
tography, pp. 265–84. ACM Digital Library.

Dwork, Cynthia, Frank McSherry, Kobbi 
Nissim, and Adam Smith. 2011. “Differential 
Privacy: A Primer for the Perplexed.” Joint 
UNECE/Eurostat Work Session on Statistical 
Data Confi dentiality, WP. 26.

Dwork, Cynthia, and Adam Smith. 2010. 
“Differential Privacy for Statistics: What We Know 
and What We Want to Learn.” Journal of Privacy and 
Confi dentiality 1(2): 135 – 54.

Fleischer, Lisa, and Yu-Han Lyu. 2012. “Approx-
imately Optimal Auctions for Selling Privacy 
When Costs Are Correlated with Data.” In EC ’12: 
Proceedings of the 13th ACM Conference on Electronic 
Commerce, pp. 568–85. ACM Digital Library.

Flood, Mark, Jonathan Katz, Stephen J. Ong, 
and Adam Smith. 2013. “Cryptography and the 

Economics of Supervisory Information: Balancing 
Transparency and Confi dentiality.” Federal 
Reserve Bank of Cleveland Working Paper 1312.

Ghosh, Arpita, and Katrina Ligett. 2013. “Privacy 
and Coordination: Computing on Databases with 
Endogenous Participation.” In EC ’13: Proceed-
ings of the Fourteenth ACM Conference on Electronic 
Commerce, pp. 543–60. ACM Digital Library.

Ghosh, Arpita, and Aaron Roth. 2011. “Selling 
Privacy at Auction.” EC ’11: Proceedings of the 12th 
ACM Conference on Electronic Commerce, pp. 199 –208. 
ACM Digital Library.

Greely, Henry T. 2007. “The Uneasy Ethical 
and Legal Underpinnings of Large-Scale Genomic 
Biobanks.” Annual Review of Genomics and Human 
Genetics 8: 343 – 64.

Hardt, Moritz, Katrina Ligett, and Frank 
McSherry. 2012. “A Simple and Practical Algo-
rithm for Differentially Private Data Release.” In 
Advances in Neural Information Processing Systems 25: 
2348 – 56.

Hardt, Moritz, and Guy N. Rothblum. 2010. 
“A Multiplicative Weights Mechanism for Privacy-
Preserving Data Analysis.” In FOCS ’10: Proceedings 
of the 51st  Annual IEEE Symposium on Foundations of 
Computer Science, pp. 61–70. ACM Digital Library.

Heffetz, Ori, and Katrina Ligett. 2013. “Privacy 
and Data-Based Research.” NBER Working 
Paper 19433.

Huang, Zhiyi, and Sampath Kannan. 2012. 
“The Exponential Mechanism for Social Welfare: 
Private, Truthful, and Nearly Optimal.” In FOCS 
’12: Proceedings of the 53rd Annual IEEE Symposium 
on Foundations of Computer Science, pp.  140–49. 
ACM Digital Library.

Kasiviswanathan, Shiva Prasad, and Adam 
Smith. 2008. “A Note on Differential Privacy: 
Defi ning Resistance to Arbitrary Side Informa-
tion.” Unpublished paper.

Kearns, Michael, Mallesh Pai, Aaron Roth, 
and Jon Ullman. 2014. “Mechanism Design in 
Large Games: Incentives and Privacy.” In ITCS ’14: 
Proceedings of the 5th Conference on Innovations in 
Theoretical Computer Science, pp.  403–410. ACM 
Digital Library.

Kinney, Satkartar K., Jerome P. Reiter, Arnold P. 
Reznek, Javier Miranda, Ron S. Jarmin, and John 
M. Abowd. 2011. “Towards Unrestricted Public Use 
Business Microdata: The Synthetic Longitudinal 
Business Database.” International Statistical Review 
79(3): 362– 84.

Klarreich, Erica. 2012. “Privacy by the Numbers: 
A New Approach to Safeguarding Data.” Quanta 
Magazine, December 10.

Korolova, Aleksandra. 2011. “Privacy Violations 
Using Microtargeted Ads: A Case Study.” Journal of 
Privacy and Confi dentiality 3(1).



98     Journal of Economic Perspectives

Korolova, Aleksandra, Krishnaram Kenthapadi, 
Nina Mishra, and Alexandros Ntoulas. 2009. 
“Releasing Search Queries and Clicks Privately.” 
In WWW ’09: Proceedings of the 18th International 
Conference on the World Wide Web, pp. 171–180. ACM 
Digital Library.

Kumar, Ravi, Jasmine Novak, Bo Pang, and 
Andrew Tomkins. 2007. “On Anonymizing Query 
Logs via Token-based Hashing.” In WWW ’07: 
Proceedings of the 16th International Conference on the 
World Wide Web, pp. 629–38. ACM Digital Library.

Lei, Jing. 2011. “Differentially Private 
M-Estimators.” Advances in Neural Information 
Processing Systems 24: 361– 69.

Ligett, Katrina, and Aaron Roth. 2012. “Take 
it or Leave it: Running a Survey When Privacy 
Comes at a Cost.” Internet and Network Economics 
(WINE ’12: Proceedings of the 8th international 
conference on Internet and Network Economics), 
pp. 378–391.

Machanavajjhala, Ashwin, Daniel Kifer, John M. 
Abowd, Johannes Gehrke, and Lars Vilhuber. 2008. 
“Privacy: Theory Meets Practice on the Map.” In 
ICDE ’08: Proceedings of the 24th IEEE International 
Conference on Data Engineering, pp. 277– 86. ACM 
Digital Library.

McSherry, Frank, and Ilya Mironov. 2009. 
“Differentially Private Recommender Systems: 
Building Privacy into the Net.” In KDD’ 09: 
Proceedings of the 15th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, 
pp. 627–36. ACM Digital Library.

McSherry, Frank, and Kunal Talwar. 2007. 
“Mechanism Design via Differential Privacy.” In 
FOCS ’07: Proceedings of the 48th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 94 –103. 
ACM Digital Library.

Narayanan, Arvind, and Vitaly Shmatikov. 2008. 
“Robust De-anonymization of Large Sparse Data-
sets.” In SP ’08: 2008 IEEE Symposium on Security 
and Privacy, pp. 111–25. ACM Digital Library.

Nekipelov, Denis, and Evegeny Yakovlev. 2011. 
“Private Extremum Estimation.” Unpublished paper.

Nissim, Kobbi, Claudio Orlandi, and Rann 
Smorodinsky. 2012. “Privacy-aware Mechanism 
Design.” In EC ’12: Proceedings of the 13th ACM 
Conference on Electronic Commerce, pp.  774–89. 
ACM Digital Library.

Nissim, Kobbi, Sofya Raskhodnikova, and Adam 
Smith. 2007. “Smooth Sensitivity and Sampling in 
Private Data Analysis.” In STOC ’07: Proceedings of 

the Thirty-Ninth Annual ACM Symposium on Theory of 
Computing, pp. 75 – 84.

Nissim, Kobbi, Rann Smorodinsky, and Moshe 
Tennenholtz. 2012. “Approximately Optimal 
Mechanism Design via Differential Privacy.” In 
ITCS ’12: Proceedings of the 3rd  Innovations in Theo-
retical Computer Science Conference, pp.  203  –213. 
ACM Digital Library.

Ohm, Paul. 2010. “Broken Promises of Privacy: 
Responding to the Surprising Failure of Anony-
mization.” UCLA Law Review 57(6): 1701–77.

Pai, Mallesh, and Aaron Roth. 2013. “Privacy 
and Mechanism Design.” Sigecom Exchanges 12(1).

Roth, Aaron, and Grant Schoenebeck. 2012. 
“Conducting Truthful Surveys, Cheaply.” In EC ’12: 
Proceedings of the 13th ACM Conference on Electronic 
Commerce, pp. 826 – 43. ACM Digital Library.

Rousseau, Peter L. 2013. “Report of the Secre-
tary.” American Economic Review 103(3): 669 –72.

Smith, Adam. 2008. “Effi cient, Differentially 
Private Point Estimators.” arXiv:0809.4794.

Smith, Adam. 2011. “Privacy-Preserving 
Statistical Estimation with Optimal Convergence 
Rates.” In STOC ’11: Proceedings of the Forty-third 
Annual ACM Symposium on Theory of Computing, 
pp. 813 –22. ACM Digital Library.

Sweeney, Latanya. 1997. “Weaving Tech-
nology and Policy Together to Maintain 
Confi dentiality.” Journal of Law, Medicine & 
Ethics 25(2–3): 98 –110.

Sweeney, Latanya. 2002. “Achieving k-anonymity 
Privacy Protection Using Generalization and 
Suppression.” International Journal of Uncertainty, 
Fuzziness and Knowledge-Based Systems 10(5): 
571– 88.

Sweeney, Latanya. 2013. “Matching Known 
Patients to Health Records in Washington State 
Data.” http://thedatamap.org/1089-1.pdf.

Sweeney, Latanya, Akua Abu, and Julia Winn. 
2013. “Identifying Participants in the Personal 
Genome Project by Name.” http://dataprivacylab
.org/projects/pgp/1021-1.pdf.

Vu, Duy, and Aleksandra Slavkovic. 2009. 
“Differential Privacy for Clinical Trial Data: Prelimi-
nary Evaluations.” In ICDMW ’09: Proceedings of the 
2009 IEEE International Conference on Data Mining 
Workshops, pp. 138 – 43. ACM Digital Library.

Xiao, David. 2013. “Is Privacy Compatible with 
Truthfulness?” In ITCS ’13: Proceedings of the 4th 
Conference on Innovations in Theoretical Computer 
Science, pp. 67– 86. ACM Digital Library.


