
 
 
 

Chapter Three
 
 
 

Hypothesis Testing 
 
 
 



Chapter Three  Hypothesis Testing 

Revised 2011  Page 1 

3.1  Introduction 
 
 The final phase of analyzing data is to make a decision concerning a set of 
choices or options.  Should I invest in stocks or bonds?  Should a new product be 
marketed?  Are my products being produced at the precise specifications?  For each of 
the above questions one could perform an experiment, collect and summarize the data, 
and then make a decision.  In most situations the decisions are all or nothing.  I decide to 
market the new product or to not market it.  I decide to buy stocks or I buy bonds.  
 One would hope that the data from the experiment would provide conclusive 
support for only one option and reject the others.  Unfortunately, most experiments are 
subject to uncertainty, which means that decisions are sometimes correct and sometimes 
incorrect.  A simple example provides insight into this process of decision-making.  
Suppose you are flipping a coin and must decide whether the coin is two-headed, fair, or 
unfair.  If you flip ten heads in a row, the data support all three beliefs about the coin, 
although the favored choice would appear to be the two-headed coin.  As soon as you flip 
a tail the data reveals that one choice-- the coin is two-headed--is clearly incorrect.  
Unfortunately the data may not clearly reveal whether the coin is fair or unfair.  As the 
proportion of heads fluctuates around one-half the data appears to support the belief that 
the coin is fair or almost fair.  That is, it is more likely that the probability of flipping a 
head is close to 0.50 or 0.49 rather than 0.01.  As this example demonstrates, the data 
may or may not provide conclusive support for different sets of beliefs. 
 The title of this chapter suggests that choices of options can be specified as a set 
of hypotheses, which are then tested.  There are differences between Bayesians and 
Classical statisticians in specifying and interpreting a hypothesis.  In order to highlight 
the differences it is useful to ask the following questions of a Bayesian and a Classical 
statistician: 
 
Q1: What is the role of prior information in hypothesis testing? 
Q2: How does the existence of costs from making wrong decisions affect 

hypothesis testing? 
Q3: What is the role of the sample size in reducing the probability of making a 

mistake? 
 
 The answers to these questions will show that Classical Hypothesis Testing does 
not adequately handle prior information, the costs from mistakes and exhibits a 
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conflicting behavior over which types of mistakes are more important when the sample 
size is increased. 
 In the next section the basic tools of Hypothesis Testing are presented along with 
some examples.  The Classical approach is presented and the Bayesian viewpoint is 
provided to point out problems (and distortions) from using the Classical approach. 
 
 
3.2  Basic Tools of Hypothesis Testing 
 
 A simple way to introduce the components of hypothesis testing is to borrow the 
judicial analogy from Leamer (1978).  Suppose you are a judge with two options; set a 
person free or send a person to jail.  There are two competing hypotheses: the individual 
is either innocent (H0) or guilty (H1).  After evaluating the evidence you must make a 
decision, which implies that you either accept H0 or H1.  There are four possible 
outcomes, which are shown in the table below. 
 
     Decision 
    Set Free Send to Jail 

Hypothesis  (Accept H0) (Accept H1) 
 

H0: Innocent 
 
 
 H1: Guilty 
   
         
 
 H0 is referred to as the null, (or favored hypothesis) while H1 is the alternative 
hypothesis.  Two of the four outcomes result in making an incorrect decision. 
Statisticians creatively label these as Type I and Type II errors.  The Type I error is 
sending an innocent person to jail.  The Type II error is setting a guilty person free.  As a 
judge you would like the probabilities of making a Type I or Type II error to equal zero.  
The Type I and Type II errors are defined as conditional probabilities: 
 
 α  = P(Type I error) = P(Reject H0\H0 true) 
 β  = P(Type II error) = P(Reject H1\H1 true). 

Correct 
Decision 

Incorrect 
Decision 
(Type I error) 

Correct 
Decision 
(Type II error) 

Incorrect 
Decision 
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 In statistical experiments α and β are set prior to observing the data.  In the above 
judicial example the court system determines the values for α and β by determining the 
type of evidence that can be presented to the court.  Since the trial may yield conflicting 
evidence and testimony, you hope that the probability of Type I and Type II errors are 
small.  In the United States, an individual is presumed innocent until proven guilty.  This 
suggests that the probability of making a Type I error is less than the probability of 
making a Type II error. 

We now attempt to answer question one by employing Bayes Rule.  Define P(H0) 
and P(H1) as the respective probabilities that either hypothesis is true.  Let the evidence 
from the trial represent the outcome from a probability distribution.  Employing Bayes 
Rule we specify a posterior probability for H0 given the evidence. 
 
 P(H0/evidence) = [P(evidence/H0) x P(H0)]/P(evidence) 
 
 A similar posterior probability is defined for H1.  The ratio of the two posterior 
probabilities yields 
 
P(H0/evidence)/P(H1/evidence) = [P(evidence/H0)/P(evidence/H1)] x [P(H0)/P(H1)] 
   
 The left-hand side of this expression is the posterior odds ratio.  A ratio greater 
than one means that the null hypothesis is favored over the alternative hypothesis.  The 
right hand side of the expression has two terms in brackets. The second bracket is the 
prior odds ratio.  If both H0 and H1 are equally likely then the ratio is equal to one.  The 
first term in the bracket is referred to as the Bayes Factor.  These conditional probabilities 
are the probabilities of observing a specific amount of evidence given H0 (or H1) is true.  
If the data prefers H0 then the Bayes factor is greater than one. 
 For a Bayesian the posterior odds ratio depends on the probability distribution that 
generates the data and the prior beliefs about H0 and H1.  For example, if P(H0) is very 
close to one, then the data will have to strongly favor H1 in order for the posterior odds 
ratio to favor H1. 
 For the Classical statistician, the posterior odds ratio is meaningless.  The prior 
probabilities for each hypothesis are either zero or one. The reason for this is that 
Classical inference assumes that the data is being generated from only one hypothesis.  
Hence, H0 is either true or false, which means that P(H0) equals one or zero.  In terms of 
the judicial example, the individual is either guilty or innocent.  Either the person 
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committed the crime or did not commit the crime.  While the evidence may be 
inconclusive, it makes no sense to a Classical statistician to set P(H0) equal to a value 
other than zero or one.  It does, however, make sense for the Classical statistician to talk 
about the probability of observing a specific set of data given a specific hypothesis.  That 
is, it's appropriate to derive the probability for the event of flipping five heads in a row 
given the coin is fair, but inappropriate to establish a probability of whether or not the 
coin is fair.  Either the coin is fair (or it is not) and the probability the coin is fair is one 
(and zero if it is not). 
 Since Classical inference excludes prior information, the data is allowed to 
determine the preferred hypothesis.  The Bayesian will let the data determine the favored 
hypothesis only if the prior odds ratio is equal to one.  It is a mistake to assume that 
letting the data determine the favored hypothesis is objective, while resorting to prior 
information is subjective.  Both the Bayesian and the Classical statistician must specify 
the underlying probability distribution that generates the data.  For example, the common 
assumption of a normal sampling distribution is merely a convenient and useful 
assumption, but one that is unlikely to be true.  Thus, some subjectivity enters into the 
process from specifying the underlying sampling distribution. 
 To summarize, the answer to question one is that Bayesians apply Bayes Rule and 
use prior information to determine the favored hypothesis while Classical inference 
excludes the use of prior information. 
 
 
3.3  A Numerical Example 
 
 In order to answer the second and third questions it is helpful to present a 
numerical example.  Suppose that a machine in an assembly line is not very reliable.  
When the machine is working properly the probability of producing an unacceptable 
product is 0.25.  When the machine is working improperly the probability is 0.50.  If the 
machine is working improperly it can be adjusted for a nominal fee.  At the beginning of 
the workday you must decide whether or not the machine is working properly.  There are 
two competing hypotheses: 
 
 H0: π = 0.25 
 H1: π = 0.50 
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 Assume that the number of unacceptable parts from a given sample will follow a 
binomial distribution.  The probability distribution will depend on π and the sample size.  
Table 1 summarizes the probability distribution for each hypothesis for a sample size of 
five.  For example, the probability of one unacceptable product is 0.2372 given H0 is true, 
and 0.0312 given H1 is true.  The problem is to decide whether or not the machine is 
working properly.  If we use the posterior odds ratio and assume that the prior odds ratio 
is equal to one, (P(H0) = P(H1) = 1/2), then the values of the "Bayes Factor" will equal the 
posterior odds ratio.  In other words, the favored hypothesis will be the one with the 
higher conditional probability.  As one can see from Table 3.3.1, H0 is favored for values 
zero and one and H1 is favored for the other values (2,3,4, and 5).  As the number of 
unacceptable products increases we tend to favor H1 over H0.  However, even in the case 
where the number of unacceptable products is five, there is still a positive 
probability(0.0010) that the machine is working properly. 

 
Table 3.3.1 

(n=5) 
 
    X = xi  0 1 2 3 4 5     
 H0: π =0.25 .2372 .3955 .2637 .0879 .0146 .0010  
 H1: π =0.50 .0312 .1562 .3125 .3125 .1562 .0312  

 

 P(X=x) = cn
x  πx (1 - π)n-x  

 
 As already noted, the problem is to decide whether or not the machine is working 
properly.  That is, do you decide to accept or reject H0?  To help you make a decision a 
random sample of five products is taken and the number of unacceptable products is 
counted.  Since you must make an all or nothing decision regarding the acceptance of H0, 
you choose a cutoff point.  The cutoff point determines whether or not you accept H0. 
 Let X denote the random variable for the number of unacceptable products.  
Suppose you decide to accept H0 if the number of unacceptable products is at most three.  
The Type I and Type II errors are calculated as follows: 
 
 α =P(reject H0\ H0 true) = P( X > 3\ H0 true) 
     = 0.0146 + 0.0010 
     = 0.0156 
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 β = P(reject H1\ H1 true) = P( X !  3\ H1 true) 
     = 0.0312 + 0.1562 +0.3125 + 0.3125 
     = 0.8124 
 
 With the above decision rule, the probability of making a Type I error is very 
small relative to the probability of making a Type II error.  Choosing a cutoff value equal 
to three makes it very unlikely that I will decide that the machine is not working properly 
when in fact it is working properly.  On the other hand it is very likely that I will 
conclude that the machine is working properly when in fact it is not. 
 An obvious question at this point is the selection of three as the cutoff value.  
Wasn't this choice arbitrary?  The answer is yes.  If we choose other cutoff values we can 
change the probabilities of the Type I and Type II errors.  Table 3.3.2 reports the 
probabilities for the two errors when we change the cutoff value.  As the table clearly 
shows, changing the cutoff value results in a tradeoff between α and β.  Increasing the 
cutoff value reduces α but increases β.  Similarly, lowering the cutoff value will increase 
α and reduce β.  There is no cutoff value that sets both α and β equal to zero. 
 
     Table 3.3.2 
   Decision Rule:  Accept H0 if X !  C*, 
   Otherwise accept H1 if X > C* 
    C* = cutoff value 
 

 C* α β 
 0 0.7627  0.0312 
 1 0.3672  0.1874 
 2 0.1035  0.4999 
 3 0.0156  0.8124 
 4 0.0010  0.9686 
 5 0.0000  1.0000 

 
 
 How does one choose the appropriate cutoff value?  It would seem that further 
information is required.  That is, if committing a Type I error is very costly shouldn't we 
set α equal to a very small number?  Classical hypothesis testing tends to view H0 as the 



Chapter Three  Hypothesis Testing 

Revised 2011  Page 7 

favored hypothesis.  Rejection of H0 is considered only when it is very unlikely that the 
data was generated by the probability distribution assumed under H0.  Essentially this 
means that the cutoff value is chosen so that α is very small.  Unfortunately the choice of 
setting α to small number is made without regard to the sample size and without 
explicitly specifying the costs associated from a Type I and Type II error.  A Bayesian 
would select a cutoff value so that the expected costs from making a mistake are 
minimized.  An example of the Bayesian approach is shown in the appendix. 
 Classical hypothesis testing sets α to a small number. The traditional values 
chosen for α are 1%, 5% and 10%.  These values are chosen regardless of the values of 
β.  In our example suppose we set the cutoff value at three.  Referring to Table 2, α will 
be equal to 0.0156 and β will equal 0.8124.  As this example demonstrates, you are more 
likely to make a Type II error rather than a Type I error. 
 Returning to answer question two we can make the following statements.  
Classical hypothesis testing, by choosing a fixed value for α, ignores the costs associated 
with the Type I and Type II errors and will choose a cutoff value that does not minimize 
expected costs.  A Bayesian sets the cutoff value so that expected costs are minimized.  
As the appendix to this chapter indicates we are better off setting β to a small number, 
(rather than α), since the cost of making a Type II error is more expensive. 
 In hypothesis testing we can always take a larger sample and reduce the variance 
of the sampling distribution.  A sample size equal to five yields very little information 
because the underlying probability distributions overlap each other.  As we increase the 
sample size, there will be less of an overlap between the two distributions.  Table 3.3.3 
reveals the probability distributions for H0 and H1 when the sample size equals ten. 
 
 

Table 3.3.3 
(n=10) 

 

 X = xi  0 1 2 3 4 5 6 7 8 9 10  

 H0: π =0.25   0.0563  0.1877  0.2816  0.2503  0.1460  0.0584  0.0162  0.0031  0.0004 0.0000  0.0000  

 H1: π =0.50   0.0010  0.0098  0.0439  0.1172  0.2051  0.2461  0.2051  0.1172  0.0439 0.0098  0.0010  
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 For larger sample sizes Classical hypothesis testing keeps α fixed in setting the 
cutoff value.  In the previous problem we set α equal to .0156. We can choose a similar 
value for α by choosing a new cutoff value at five. 
 
 Decision Rule: Accept H0 if X !  5, 
    Otherwise reject H0. 
 
 α = P(reject H0/ H0 true) 

 = P(X > 5/ H0 true) 
  = 0.0162 + 0.0031 + 0.0004 
  = 0.0197 
 
 β = P(reject H1/ H1 true) 
   = P(accept H0/ H1 true) 
  = P(X !  5/ H1 true) 
  = 0.0010 + 0.0098 + 0.0439 + 0.1172 + 0.2051 + 0.2461 

= 0.6231 
 
 Notice that by keeping α fixed at around 2%, β is reduced by increasing the 
sample size.  As the sample size is increased, holding α fixed reduces the probability of a 
Type II error since less of the distribution will fall below the cutoff value.  The reason for 
the declining value of β is due to the sampling variance declining with the sample size.  
(Recall that for the binomial distribution the sampling variance of the proportion is π(1 - 
π)/n.) 
 If we hold α at a fixed level of 2% we can eventually reduce β to almost zero as 
the sample size increases to larger number.  Notice that keeping α fixed as the sample 
size grows implies that at some point β will be less than α.  Originally we set α equal to 
a small number because we regarded the Type I error as the more serious mistake.  
However, as we increase the sample size, β decreases and at some point becomes smaller 
than α.  By setting β less than α it seems that we now regard the Type II error as the 
more serious mistake.  Is H1 now the favored hypothesis?  If we still want to keep H0 as 
the favored hypothesis we must reduce α as the sample size grows.  In other words, a 
larger sample size should lead us to reduce both α and β. 
 The Bayesian sets the cutoff value to minimize expected costs. If competing 
hypotheses are equally likely to be true and the costs are equal, then we can write 
expected cost in the following form: 
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 E(C) = (L/2) (α + β). 
 
 The above function is minimized by minimizing (α + β).  The formal solution for 
choosing α and β is beyond the scope of this book. However, suppose we choose the 
cutoff value at the midpoint between the two competing hypotheses, (0.25 + 0.50)/2.  For 
a sample size of 100 the cutoff value is 37.5 [(0.25 + 0.50)/2 * 100].  As the sample size 
grows to a larger number both α and β decrease and in the limit approach zero.  Rather 
than hold α fixed, the Bayesian approach leads to a reduction in both α and β. 
 We now answer question three. What is the role of the sample size in reducing the 
probability of making a mistake?  For Classical inference a larger sample size leads to a 
reduction only in the Type II error.  The probability of a Type I error remains fixed and 
eventually becomes the more likely mistake relative to the Type II error.  For Bayesian 
inference both α and β are reduced as the sample size grows larger. 
 The remaining material in this chapter covers the various types of hypothesis 
testing.  For example, one can specify a "point" hypothesis or a "composite"  
hypothesis.  The hypothesis can imply a one-tail or two-tail test. 
 
 
3.4  Point Null Hypothesis vs. Composite Alternative Hypothesis 
 
 In the preceding example both H0, and H1 were specified as a point hypothesis.  
Either H0 was true or H1 was true.  No other values of π were permitted to generate the 
data. 
 An alternative hypothesis would be to state that π is greater than 0.25.  In this case 
H1 is a composite hypothesis.  Rejection of H0 implies the acceptance of a set of values 
greater than 0.25 rather than a specific value.  Since the calculation of β depends on the 
underlying distribution generating the data, a composite hypothesis will result in β being 
a function of π.  That is, β is calculated for each value of π greater than 0.25. 
 In this next problem we will specify H0 as a point hypothesis and specify H1 as a 
composite hypothesis.  The Type I error will be specified while the value of β will not be 
calculated. 
 
 
3.5  The Pizza Problem 
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 While visiting a local pizza parlor you order a large pizza. The menu claims that 
the diameter of a large pizza is 15 inches.  Being a member in good standing of the local 
consumer activist group, "The False Traders", you measure the diameter of the pizza 
and determine that it is less than 15 inches.  You approach the manager and claim that 
since the pizza is less than 15 inches in diameter, the claim on the menu is false. 
 The manager responds by claiming that the machine is set to cut the pizzas at a 
15-inch diameter.  Unfortunately, due to factors beyond his control, some of the pizzas 
are cut less than 15 inches and some are cut more than 15 inches in diameter.  The 
manager then directs you to read the fine print below the description of a large pizza. The 
fine print reveals that the diameters of large pizzas are normally distributed with a mean 
of 15 inches and a standard deviation of 1 inch. 
 You still believe the machine is cutting the pizzas at a diameter less than 15 
inches and propose a test.  From a sample of four large pizzas, the sample mean of the 
diameters will be calculated and a decision will be make regarding the null hypothesis 
which is H0: µ  =  15.  The Type I error will be set at 0.05.  The above experiment is 
formally described below: 
 
 Hypothesis: 
   H0: µ = 15 
   H1: µ  !  15 
   α = P(Type I error) = 0.05 
 
 Sampling Distribution for H0: 
 
   X  ~ N( µ = 15, σ2( X ) = 1/n) 

 
 Decision Rule: 
   Reject H0 if X  !  C*, 
   Otherwise accept H0. 
 
 The null hypothesis is a specified as a point hypothesis.  It could be specified as a 
composite hypothesis (µ !  15) but you are less concerned about whether or not the 
manager is making the pizzas too large.  Furthermore, if µ is greater than 15 inches, the 
alternative hypothesis is less likely to be true.  Finally, the manager has little incentive in 
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terms of profit maximization to advertise large pizzas at 15 inches and then make them 
larger. 
 In order to perform the hypothesis test we need to calculate X  and compare it to 
C*.  The cutoff value C* is calculated from setting the Type I error equal to 5%.  Figure 
3.5.1 shows a picture of how C* is determined when the Type I error is set to 0.05.  
Lowering the Type I error will lower C*.  A higher value for the Type I error will imply a 
higher value for C*.  At the 5% level the cutoff value is set 1.64 standard deviations 

below the mean.  Since the standard deviation is equal to 1/2 (σ( X— ) = 1/2), moving 1.64 
standard deviations below the mean, leads to setting C* at 14.18 inches.  The calculation 
is shown below: 
 
 α = 0.05 = P(reject H0/ H0 true) 
 
       = P( X  < C*\ µ=15, σ( X ) = 1/2) 
 
       = P( ( X  - µ)/σ( X ) < (C*-µ)/ σ( X )) 
 
       = P(Z < (C*-µ)/ σ( X )) 
 
       = P(Z < -1.64) 
 
The last line reveals the z-value that will make α equal to 0.05.  From the last two 
expressions above we have: 
 
   -1.64 = (C* - 15)/0.5 
 
    or 
 
   C* = 15 + 1/2(-1.64) 
    = 15 + -0.82 
    = 14.18 
 
The decision rule can now be written as follows: 
 
  Decision Rule: 
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   Reject H0 if X  < 14.18, 
   Otherwise accept H0. 
 
 

13.00! 13.50! 14.00! 14.50! 15.00! 15.50! 16.00! 16.50! 17.00!

X (inches)!

Figure 3.5.1!

Reject H0      Accept H0!

! = 5%"

C* = 14.18!
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The experiment is performed and X  is equal 14.25 inches.  The null hypothesis is 
accepted.  An important point to note here is that acceptance of H0 does not imply, or 
prove that H0 is true1.  Unless one is able to set α and β equal to zero there is always the 
chance of accepting the wrong hypothesis. 
 Since we assumed normality in the previous problem there is no way to set the 
cutoff value so that α equal zero.  However, with the normal distribution assumption, 
sample means outside of three standard deviations from the mean are very unlikely. 
 The decision rule in the pizza problem was specified in terms of inches, the unit 
of measurement.  The null hypothesis was rejected if X  was less than 14.18 inches.  
Another way to state the decision rule is in terms of the standard normal distribution.  
Since 14.18 inches is 1.64 standard deviations below the population mean, the cutoff 
value for the standard normal distribution is -1.64. 
 We can rewrite the decision rule in the following way: 
 
   Reject H0 if Zs < -1.64, 

   Otherwise accept H0,  
 
   where Zs = ( X  - 15)/0.5 

 
 The variable Zs represents the sample Z-value based on standardizing the sample 

mean.  Figure 3.5.2 shows the picture of the decision along with the probability 
distribution under H0. 
 

                                                
1 Rather than state the null hypothesis is accepted, most textbooks prefer to state, "we fail to reject the null 
hypothesis".  Similarly, rejection of the null hypothesis can be stated as "a failure to accept the null 
hypothesis".  I find this distinction amusing.  Try this on a loved one.  Rather than say "I accept the 
hypothesis that you love me", state "I fail to reject the hypothesis that you love me", just in case you 
believe in a small type one error. 
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-4! -3! -2! -1! 0! 1! 2! 3! 4!

Z!

Figure 3.5.2!

Reject H0     Accept  H0!

-Z* = -1.64!

! = 5%"

 
 
3.6  Types of Hypothesis Tests 
 
 The pizza problem tested a point null hypothesis against a composite alternative 
hypothesis.  Since H1 specified alternative values that were lower, the cutoff value was 
set below the mean assumed under H0.  The area for α was distributed in the lower-tail of 
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the normal distribution.  This type of test is referred to as a lower-tail test.  Similarly, an 
alternative hypothesis can be specified to set up an upper-tail test or a two-tail test.  The 
general forms for these three types of tests are shown below. 
 
Case 1: Lower-tail test: H0: µ = µo 
     H1: µ < µo 

 
  Decision Rule: Reject H0 if Zs < -Z*, 
     Accept H0 if Zs ≥ -Z*. 
 
 
Case 2: Upper-tail test: H0: µ  = µo 
     H1: µ  > µo 
 
  Decision Rule: Reject H0 if Zs > Z* 
     Accept H0 if Zs ≤ Z* 
 
 
Case 3: Two-tail test:  H0: µ  = µo 
     H1: µ ≠ µo 
 
   Decision Rule: Reject H0 if |Zs| > Z* 
     Accept H0 if |Zs| ≤ Z*  
 
 Figure 3.6.1 shows the picture for each case.  The lower-tail and upper-tail tests 
are similar.  The cutoff value Z* is determined by allocating the Type I error to the lower 
or upper portion of the standard normal distribution.  The two-tail test is similar to 
constructing a confidence interval.  The difference being that the interval for the decision 
rule is centered around the population mean as opposed to the sample mean.  An 
extremely large or small value for Zs will result in H0 being rejected.  Note that the Type 

I error is split equally on both sides of the distribution. 
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-4! -3! -2! -1! 0! 1! 2! 3! 4!

Z!

Case 3!
Two tail test!

Reject H0                        Accept H0                         Reject H0    !

!/2! !/2!

-Z*! Z*!
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Below is the derivation of expected costs from using the Bayesian approach to take into 
account differences in the probabilities and costs of mistakenly accepting the wrong 
hypothesis. 
 
 
Definitions 
   E(C) = expected costs 
   L1   = loss from Type I error 
   L2   = loss from Type II error 
 

E(C) = L1*P(H0 true and reject H0) + L2*P(H1 true and reject H1) 
       = L1 * P(H0) * P(reject H0/ H0) + L2 * P(H1) * P(reject H1/ H1) 
       = α ∗ L1 * P((H0) + β * L1 * P((H1) 
 

Suppose L1 = L2 = L and P(H0) = P(H1) = 1/2.  We can then reduce the expected cost 
expression to  

 
   E(C) = (L/2) * (α  + β ) 
 
  which implies that E(C) is minimized when (α + β) is minimized. 
 
Numerical Example Using Table 2 Cutoff Values 
 
  Let L1 = 10, L2 = 40, and P(H0) = P(H1) = 1/2 
 
  E(C)  = α(10)(1/2) + β(40)(1/2) 
 
   = 5α+ 20β 
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 Cutoff Value (X*) α β E(C) (α + β) 
  0  .7627  .0312  4.4375 .7939 
  1  .3672  .1874  5.58  .5546 
  2  .1035  .4999  10.5155 .6034 
  3  .0156  .8124  16.326 .8280 
  4  .0010  .9686  19.377 .9696 
  5  0.0  1.0  20.0  1.0 

 

 
 


